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UNIT 1
INTRODUCTION

This topic is about a branch of discrete mathematics called graph theory. Discrete mathematics —
the study of discrete structure (usually finite collections) and their properties include combinatorics (the
study of combination and enumeration of objects) algorithms for computing properties of collections of
objects, and graph theory (the study of objects and their relations).

Many problem in discrete mathematics can be stated and solved using graph theory therefore
graph theory is considered by many to be one of the most important and vibrant fields within discrete
mathematics.

Many problem in discrete mathematics can be stated and solved using graph theory therefore graph
theory is considered by many to be one of the most important and vibrant fields within discrete
mathematics.

DISCOVERY

It is no coincidence that graph theory has been independently discovered many times, since it
may quite properly be regarded as an area of applied mathematics .Indeed the earliest recorded mention
of the subject occurs in the works of Euler, and although the original problem he was considering might
be regarded as a some what frivolous puzzle, it did arise from the physical world.

Kirchhoff’s investigations of electric network led to his development of the basic concepts and
theorems concerning trees in graphs. While Cayley considered trees arising from the enumeration of
organic chemical isomer’s. Another puzzle approach to graphs was proposed by Hamilton. After this,
the celebrated four color conjecture came into prominence and has been notorious ever since. In the
present century, there have already been a great many rediscoveries of graph theory which we can only
mention most briefly in this chronological account.

WHY STUDY GRAPH?

The best way to illustrate the utility of graphs is via a “cook’s tour” of several simple problem
that can be stated and solved via graph theory. Graph theory has many practical applications in various
disciplines including, to name a few, biology, computer science, economics, engineering, informatics,
linguistics, mathematics, medicine, and social science, (As will become evident after reading this
chapter) graphs are excellent modeling tools, we now look at several classic problems.

We begin with the bridges of Konigsberg. This problem has a historical significance, as it was
the first problem to be stated and then solved using what is now known as graph theory. Leonard euler
fathered graph theory in 1973 when his general solution to such problems was published euler not only
solved this particular problem but more importantly introduced the terminology for graph theory.

1. THE KONIGSBERG BRIDGE PROBLEM
Euler (1707-- 1782) became the father of graph theory as well as topology when in 1736 he
settled a famous unsolved problem of his day called the Konigsberg bridge problem. The city of
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Konigsberg was located on the Pregel river in Prussia, the city occupied two island plus areas on both
banks. These region were linked by seven bridges as shown in fig(1.1).

The problem was to begin at any of the four land areas, walk across each bridge exactly once and
return to the starting point one can easily try to solve this problem empirically but all attempts must be
unsuccessful, for the tremendous contribution of Euler in this case was negative.

In proving that the problem is unsolvable, Euler replaced each land area by a point and each
bridge by a line joining the corresponding points these by producing a “graph” this graph is shown in
fig(1.2) where the points are labeled to correspond to the four land areas of fig(1.1) showing that the
problem is unsolvable is equivalent to showing that the graph of fig(1.2) cannot be traversed in a certain
way.

In proving that the problem is unsolvable, Euler replaced each land area by a point and each bridge by a
line joining the corresponding points these by producing a “graph” this graph is shown in fig(1.2) where
the points are labeled to correspond to the four land areas of fig(1.1) showing that the problem is
unsolvable is equivalent to showing that the graph of fig(1.2) cannot be traversed in a certain way.

e
D/

Figurel.2: The Graph of the Konigsberg bridge problem
Rather than treating this specific situation, Euler generalized the problem and developed a
criterion for a given graph to be so traversable; namely that it is connected and every point is incident
with an even number of lines. While the graph in fig(1.2) is connected, not every point incident with an
even number of lines.

2. ELECTRIC NETWORKS
Kirchhoffs developed the theory of trees in 1847 in order to solve the system of simultaneous
linear equations linear equations which gives the current in each branch and around each circuit of an
electric network..
Although a physicist he thought like a mathematician when he abstracted an electric network
with its resistances, condensers, inductances, etc, and replaced it by its corresponding combinatorial
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structure consisting only of points and lines without any indication of the type of electrical element
represented by individual lines. Thus, in effect, Kirchhoff replaced each electrical network by its
underlying graph and showed that it is not necessary to consider every cycle in the graph of an electric
network separating in order to solve the system of equation.

Instead, he pointed out by a simple but powerful construction, which has since became
std procedure, that the independent cycles of a graph determined by any of its “spanning trees” will
suffice. A contrived electrical network N, its underlying graph G, and a spanning tree T are shown in
fig(1.3)

Fig (1.3)- A nptwork N,

its underl
V)

ing graph G, and a spanning tree T

G:

3. UTILITIES PROBLEM
These are three houses fig(1.4) H;, H,, and H3, each to be connected to each of the three utilities
water(w), gas(G), and electricity(E)- by means of conduits, is it possible to make such connection
without any crossovers of the conduits?

Fig(1.4)- three — utilities problem
Fig(1.4) shows how this problem can be represented by a graph — the conduits are shown as edges while
the houses and utility supply centers are vertices

4. SEATING PROBLEM
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Nine members of a new club meet each day for lunch at a round table they decide to sit such that
every members has different neighbors at each lunch

Fig(1.5) — Arrangements at a dinner table
How many days can this arrangement lost?

This situation can be represented by a graph with nine vertices such that each vertex represent a
member, and an edge joining two vertices represents the relationship of sitting next to each other.
Fig(1.5) shows two possible seating arrangement — these are 1 23456 78 9 1 (solid lines), and 1 3 52
749 6 8 1 (dashed lines) it can be shown by graph — theoretic considerations that there are only two
more arrangement possible. They are 1 57392846 1and 179583624 1. In general it can be
shown that for n people the number of such possible arrangements is (n-1)/2, if n is odd. (n-2)/2, if n is
even
WHAT IS A GRAPH?

A linear graph (or simply a graph) G = (V,E) consists of a set of objects V = {vy, v,.....} called
vertices, and another set E = {ej, €,,.....} whose elements are called edges, such that each edge e is
identified with an unordered pair (v; , vj) of vertices. The vertices v; , v;j associated with edge e are
called the end vertices of e . The most common representation of a graph is by means of a diagram, in
which the vertices are represented as points and each edge as a line segment joining its end vertices
The object shown in fig (a)

The Object Shown in Fig.(a)

€1
A/ 1 €3 V2C>

€s €4 ) Vs

€7

V; Co V,

Fig (a) — Graph with five vertices and seven edges
Observe that this definition permits an edge to be associated with a vertex pair (v; , v;j) such an
edge having the same vertex as both its end vertices is called a self-loop. Edge e; in fig (a) is a self-loop.
Also note that the definition allows more one edge associated with a given pair of vertices, for example,
edges e4 and es in fig (a), such edges are referred to as ‘parallel edges’. A graph that has neither self-

loops nor parallel edges is called a ‘simple graph’.
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FINITE AND INFINITE GRAPHS

Although in our definition of a graph neither the vertex set V nor the edge set E need be finite, in
most of the theory and almost all application these sets are finite. A graph with a finite number of
vertices as well as a finite number of edge is called a ‘finite graph’: otherwise it is an infinite graph.
The graphs in fig (a), (1.2), are all examples of finite graphs. Portions of two infinite graphs are shown
below

<<
<

N

Fig(1.6) — Portion of two infinite graphs

INCIDENCE AND DEGREE

When a vertex v; is an end vertex of same edge ¢; , v; and ¢; are said to be incident with (on or
to) each other. In fig (a), for examples, edges e,, e and e; are incident with vertex v4. Two nonparallel
edges are said to be adjacent if there are incident on a common vertex. For example, e, and e7 in fig (a)
are adjacent. Similarly, two vertices are said to be adjacent if they are the end vertices of the same edge
in fig (a), v4 and vs are adjacent, but v; and v4 are not.

The number of edges incident on a vertex v; , with self-loops counted twice, is called the degree,
d (vi), of vertex v, in fig (a) for example d(v;) = d(v2) = d(v3) = 3, d(v2) =4 and d(vs) = 1. The degree
of a vertex is same times also referred to as its valency.

Let us now considered a graph G with e edges and n vertices vy, v; ,.....Vy since each edge
contributes two degrees
The sum of the degrees of all vertices in G is twice the number of edges in G that is

id(v,.):2e————(1.l)

Taking fig (a) as an example, once more d(vy) + d(vy) + d(v3) + d(v4) +d(vs) =3 +4+3+3 +1
= 14 = twice the number of edges.
From equation (1.1) we shall derive the following interesting result.

THEOREM 1.1
“The number of vertices of odd degree in a graph is always even”.

Proof : If we consider the vertices with odd and even degree separately, the quantity in the left
side of equation (1.1) can be expressed as the sum of two sum, each taken over vertices of even and odd
degree respectively, as follows.
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Zd(vi) =>.d(v) +D dv,) ——-(1.2)
Since the left hand side‘in equation’ d(l .2) is even, and the first expression on the right hand side is
even (being a sum of even numbers), the second expression must also be even

Z d(v,) =an—even—number ————(1.3)

odd

Because in equation (1.3) each d(vy) is odd, the total number of terms in the sum must be even to
make the sum an even number. Hence the theorem.

A graph in which all vertices are of equal degree is called a ‘regular graph’ (or simply a
regular).

DEFINITION:
ISOLATED VERTEX, PENDANT VERTEX AND NULL GRAPH

\&

Fig(1.7) — Graph containing isolated vertices, series edges, and a pendent vertex.

A vertex having no incident edge is called an ‘isolated vertex’. In other words, isolated vertices
are vertices with zero degree. Vertices v4 and v7 in fig(1.7), for example, are isolated vertices a vertex of
degree one is called a pendent vertex or an end vertex v; in fig(1.7) is a pendent vertex. Two adjacent
edges are said to be in series if their common vertex is of degree two in fig(1.7), the two edges incident
on v are in series.

In the definition of a graph G = (V,E), it is possible for the edge set E to be empty. Such a graph ,
without any edges is called a ‘null graph’. In other words, every vertex in a null graph is an isolated
vertex. A null graph of six vertices is shown in fig (1.8). Although the edge set E may empty the vertex

set V must not be empty; otherwise there is no graph. In other words, by definition, a graph must have
atleast one vertex

Fig 1.8: Null graph of Six Vertices

A BRIEF HISTORY OF GRAPH THEORY
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As mentioned before, graph theory was born in 1736 with Euler’s paper in which he solved
Konigsberg bridge problem. For the next 100 years nothing more was done in the field.

In 1847,G.R.Kirchhoff (1824-1887) developed the theory of trees for their applications in
Electrical network. Ten years later, A. Cayley (1821-1895) discovered trees while he was trying to
enumerate the isomers of saturated hydrocarbons C,Hyp .

About the time of Kirchhoff and Cayley,two other milestones in graph theory were laid. One was
the four-color conjecture, which states that four colors are sufficient for coloring any atlas(a map on a
plane)such that the countries with common boundaries have different colors.

It is believed that A.F. Mobius (1790-1868) first presented four-color problem in one of his
lectures in 1840.

About 10 years later A.De Morgan( 1806-1871) discussed this problem with his fellow
mathematicians in London.De Morgan’s letter is the first authenticated reference to the four-color
problem.The problem became well known after Cayley published it in 1879 in the first volume of the
Proceedings of the Roval Geographic Society .To this day ,the four-color conjecture is by far the
most famous unsolved problem in Graph theory. It has stimulated an enormous of research in the field.

The other milestone is due to Sir W.R. Hamilton (1805-1865). In the year 1859,he invented a
puzzle and sold it for 25 guineas to a game manufacturer in Dublin. The puzzle consisted of a wooden
,regular Dodecahedron (A polyhedron with 12 faces and 20 corners, each face being a regular pentagon
and three edges meeting at each corner). The corners were marked with the names of 20 important cities;
London, Newyork, Delhi, Paris and so on .The object in the puzzle was to find a route along the edges of

the Dodecahedron, passing through each of the 20 cities exactly once.

Although the solution of this specific problem is easy to obtain, to date no one has found a
necessary and sufficient condition for the existence of such a route (called Hamiltonian circuit) in an
arbitrary graph.

This fertile period was followed by half a century of relative inactivity. Then a resurgence of
interest in graphs started during the 1920°s.0ne of the pioneers in this period was D. Konig. He
organized the work of other mathematicians and his own and wrote the first book on the subject which
was published in 1936.

The past 30 years has been a period of intense activity in graph theory both pure and applied. A
great deal of research has been done and is being done in this area. Thousands of papers have been
published and more than hundred of books written during the past decade. Among the current leaders
in the field are Claude Berg, Oystein Ore, Paul Erdos, William Tutte and Frank Harary.
DIRECTED GRAPHS AND GRAPHS:

DIRECTED GRAPHS :

Look at the diagram shown below. This diagram consists of four vertices A,B,C,D and three

edges AB,CD,CA with directions attached to them .The directions being indicated by arrows.
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Fig.

Because of attaching directions to the edges, the edge AB has to be interpreted as an edge from
the vertex A to the vertex B and it cannot be written as BA. Similarly the edge CD is from C to D and
cannot be written as DC and the edge CA is from C to A and cannot be written as AC .Thus here the
edges AB, CD, CA are directed edges.

The directed edge AB is determined by the vertices A and B in that order and may therefore be
represented by the ordered pair (A,B). similarly, the directed edge CD and CA may be represented by
the ordered pair(C,D) and (C,A) respectively. Thus the diagram in fig(1.1) consists of a nonempty set of
vertices, namely {A,B,C,D} and a set of directed edges represented by ordered pairs
{(A,B),(C,D),(C,A) }.Such a diagram is called a diagram of a directed graph.

DEFINITION OF A DIRECTED GRAPH :

A directed graph (or digraph) is a pair (V,E), where V is a non empty set and E is a set of ordered
pairs of elements taken from the set V.

For a directed graph (V, E), the elements of V are called Vertices (points or nodes) and the
elements of E are called “Directed Edges”. The set V is called the vertex set and the set E is called the
directed edge set
The directed graph (V,E) is also denoted
by D=(V.E) or D =D(V,E).

The geometrical figure that depicts a directed graph for which the vertex set is
V={A,B,C,D} and the edge set is
E={AB,CD,CA}={(A,B),(C,D),(C,A)}

#

By o)

Fig(1.2) depicts the directed graph for which the
vertex set is V={A,B,C,D} and the edge set is
E={AB,CD,AC}={(A,B),(C,D),(A,C)}.
It has to be mentioned that in a diagram of a directed graph the directed edges need not be
straight line segments, they can be curve lines (arcs )Also.

For example, a directed edge AB of a directed graph can be represented by an arbitrary arc
drawn from the vertex A to the vertex B as shown in fig(1.3).
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b

Fig.

In fig (1.1) every directed edge of a digraph (directed graph) is determined by two vertices of the
diagraph- a vertex from which it begins and a vertex at which it ends. Thus ,if AB is a directed edge of a
digraph D. Then it is understood that this directed edge begins at the vertex A of D and terminates at the
vertex B of D. Here we say that A is the initial vertex and B is the terminal vertex of AB.

It should be mentioned that for a directed edge (in a digraph) the initial vertex and the terminal
vertex need not be different. A directed edge beginning and ending at the same vertex A is denoted by
AA or (A,A) and is called directed loop. The directed edge shown in Fig.(1.4) is a directed loop which
begins and ends at the vertex A.

A digraph can have more than one directed edge having the same initial vertex and the same
terminal vertex. Two directed edges having the same initial vertex and the same terminal vertex are
called parallel directed edges.

Two parallel directed edges are shown in fig(1.5)(a).

Two or more directed edges having the same initial vertex and the same terminal vertex are
called “multiple directed edges”. Three multiple edges are shown in fig(1.5)(b).
IN- DEGREE AND OUT —-DEGREE

If V is the vertex of a digraph D, the number of edges for which V is the initial vertex is called
the outgoing degree or the out degree of V and the number of edges for which V is the terminal vertex
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is called the incoming degree or the in degree of V. The out degree of V is denoted by d” (v) or o d (v)
and the in degree of V is denoted by d” (v) orid (v).
It follows that
i. d"(v)=0,if Visasink
ii. d(v)=0,if Vis asource
iii. d"(v)=d (v)=0,ifV is an isolated vertex.
For the digraph shown in fig(1.6) the out degrees and the in degrees of the vertices are as given

below
M 7 \E 7 VQ\
Y,y
S
6 4 Vs

d (vi)=2 dw)=1

d"(vy)=1 d(vy)=3

d'(v3)=1 d(v3)=2

d"(vy)= 0 d (v4)=0

d"(vs)= 2 d(vs)=1

d" (ve)= 2 d (ve)=1

We note that ,in the above digraph, there is a directed loop at the vertex v; and this loop
contributes a count 1 to each of d" (v3) and d (v3).

We further observe that the above digraph has 6 vertices and 8 edges and the sums of the out-
degrees and in-degrees of its vertices are

St w)=8, Y d (1)=8

Example 1: Find the in- degrees and the out-degrees of the vertices of the digraph shown in fig (1.8)

V, V.

Vs

Vs

Fig.
SOLUTION:
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The given digraph has 7 vertices and 12 directed edges. The out-degree of a vertex is got by
counting the number of edges that go out of the vertex and the in-degree of a vertex is got by counting
the number of edges that end at the vertex. Thus we obtain the following data

Vertex Vi V, V3 V4 Vs Vs V5
Out-degree 4 2 2 1 3 0 0
[n-degree 0 1 2 2 1 2 4

This table gives the out-degrees and in-degrees of all the vertices. We note that v; is a source and v
and v; are sinks.

We also check that sum of out-degrees = sum of in — degrees = 12 = No of edges.

Example 2:Write down the vertex set and the directed edge set of each of the following digraphs.

Fig.

V1 VZ

Vs

\Z:

Fig. (ii)
Solution of graph (i) & (ii):
1) This is a digraph whose vertex set is
V={A,B,C} and the directed edge set
E={(B,A),(C,A),(C,A),(C.B),(C,B)}.
ii) This is a digraph whose vertex set is
V={V1,V,,V3, V4} and the directed edge set
E={(V1,V2),( V1,V3),( V1,V3),
(V2,V3),(V3,V2) ),(V3,V4) ,(V4,Va)}.
Example 3: For the digraph shown in fig, determine the out-degrees and in-degrees of all the vertices
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6 / Vs -74

Solution: d° (V]) =0, d (Vz) = 3,d_ (V3) =0, d (V4) = O,d_ (V5) = l,d_ (V6) =1
d"(vi)=2,d"(v2)=0,d" (v3)=1,d" (v4) =0 ,d"(vs)= 1,d" (v¢) =1
Example 4: Let D be the digraph whose vertex set
V={V,V,,V3, V4,Vs5 } and the directed edge set is
E ={( V1,V4),( V2,V3), (V3,V5),(V4,V2),(V4,V4),(V4,V5),(V5,V1)}.
Write down a diagram of D and indicate the out-degrees and in-degrees of all the vertices

V2
Vi

Va4

vertices Vi V, V3 V4 \Z

D' 1 1 1 3 1

d 1 1 1 2 2

DEFINITION :
SIMPLE GRAPH :
A graph which does not contain loops and multiple edges is called simple graph.

Fig. Simple Graph
LOOP FREE GRAPH.
A graph which does not contain loop is called loop free graph.
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MULTIGRAPH
A graph which contain multiple edges but no loops is called multigraph.

Fig. Multigraph

GENERAL GRAPH
A graph which contains multiple edges or loops (or both) is called general graph.

€3

€6 €4

COMPLETE GRAPH :
A simple graph of order > 2 in which there is an edge between every pair of vertices is called a

complete graph (or a full graph).
In other words a complete graph is a simple graph in which every pair of distinct vertices are
adjacent.
A complete graph with n >2 vertices is denoted by K,, .

A complete graph with 2,3,4,5 vertices are shown in fig (1.9)(a) to (1.9)(d) respectively. Of
these complete graphs ,the complete graph with 5 vertices namely Ks(shown in fig.1.9 (d),is of great
importance. This graph is called the Kuratowski’s first graph

Fig.(1.9)

AN AT

(@): Ky (b):Ks (c) 1 K4 (d) : Ks
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BIPARTITE GRAPH

Suppose a simple graph G is such that its vertex set V is the union of two of its mutually disjoint
non-empty subsets V; and V, which are such that each edge in G joins a vertex inV; and a vertex
inV,.Then G is called a bipartite graph. If E is the edge set of this graph, the graph is denoted by G =
(V1, Va: E), or G = G(V}, V: E). The sets Viand V; are called bipartites (or partitions) of the vertex set
V.

Fig. (1.10)
For example, consider the graph G in fig(1.10) for which the vertex set is
V={A,B,C,P,Q,R,S} and the edge set is
E= {AP,AQ,AR,BR,CQ,CS}. Note that the set V is the union of two of its subsets V;={ A,B,C} and
V,={P,Q,R,S} which are such that
1) V, and V; are disjoint.
i1)  Every edge in G joins a vertex in V; and a vertex  in V,.
ii1) G contains no edge that joins two vertices both of which are in V; or V5. This graph is a bipartite
graph with V,={ A,B,C} and V,={P,Q,R,S} as bipartites.

COMPLETE BIPARTITE GRAPH

A bipartite graph G= {V,, V, ; E} is called a complete bipartite graph, if there is an edge
between every vertex in V| and every vertex in V.

The bipartite graph shown in fig (1.10) is not a_complete bipartite graph. Observe for example
that the graph does not contain an edge joining A and S.

A complete bipartite graph G={ V|, V; ; E} in which the bipartites V;and V, contain r and s
vertices respectively, with r < s is denoted by K, .In this graph each of r vertices in V= is joined to each
of s vertices in V; .Thus K, has r+ s vertices and rs edges. That is K, is of order r+s and size rs. It is
therefore a (r+ s,rs) graph

M

) Kis ()
¢ Fig. 1.11
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Fig 1.11 (a) to (d) depict some bipartite graphs. Observe that in fig 1.11(a),the bipartites are
Vi={ A } and V,={P,Q,R}; the vertex A is joined to each of the vertices P,Q,R by an edge. In fig
1.11(b) ,the bipartites are V;={A} and

V,={M,N,P,Q,R}; the vertex A is joined to each of the vertices M,N,P,Q,R by an edge. In fig
1.11(c) ,the bipartites are V,={ A,B } and V,={ P,Q,R}; each of the vertices A and B is joined to each of
the vertices P,Q,R by an edge. In fig 1.11(d),the bipartites are V;={ A,B,C } and V,={P,Q,R}; each of
the vertices A,B,C is joined to each of the vertices P,Q,R. Of these complete bipartite graph the graph
K33 shown in fig 1.11(d),is of great importance. This is known as Kuratowski’s second graph.

Example 1. Draw a diagram of the graph G = (V,E) in each of the following cases.
a) V= { A,B,C,D} ,E={AB,AC,AD,CD}
b) V:{Vl,Vz,V3, V4 ,V5 },
E: {V1V2 ,V1V3,V2V3,V4V5}.
c) V={P,Q,R,S,T} ,E={PS,QR,QS}
d) V:{ Vl,Vz,V3, V4 ,V5,V6},
E={V1V4,V Ve, V4iVe, ViV, V3Vs, Vo Vs

Solution :The required diagram are shown below

o4

N

Fig: (c) Fig: (d)
Example 2: Which of the following is a complete graph?

IL L g
(a) (b)
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Solution: The first of the graph is not complete. It is not simple on the one hand and there is no
edge between A and C on the other hand. The second of the graphs is complete. It is a simple graph and
there is an edge between every pair of vertices.

Example 3: Which of the following graphs is a simple graph? a multigraph ? a general graph ?

6 (ii) (ii1)
Solution: (1) General Graph,

(i1) Simple Graph,

(111) Multigraph

Example 4: Identify the adjacent vertices and adjacent edges in the graph shown in Figure.

Vi

€ €3

€e

€4

Vs
Solution :
Adjacent Vertices : V| & V,, V1 & V3, V| & V4,V & Vs
Adjacent edges : ¢; & ey, ¢; & e3,¢; & s, €1 & €, € & €4, € & €5, €2 & €, €3 & €5, €3 and ¢g.
VERTEX DEGREE AND HANDSHAKING PROPERTY :

Let G = (V,E) be a graph and V be a vertex of G. Then the number of edges of G that are
incident on V (that is, the number of edges that join V to other vertices of G) with the loops counted
twice is called the degree of the vertex V and is denoted by deg(v) or d(V).

The degree of the vertices of a graph arranged in non-decreasing order is called the degree
sequence of the graph. Also, the minimum of the degree of a graph is called the degree of the graph

\"AA V,
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For example, the degrees of vertices of the graph shown in fig are as given below
d(V1)=3,d(V2)=4,d(V3)=4,d(V4) =3

Therefore,the degree sequence of the graph is 3,3,4,4 and the degree of the graph is 3.

Regular Graph : A graph in which all the vertices are of the same degree K is called a regular graph
of degree K, or a K- regular graph.In particular, a 3-regular graph is called a cubic graph.

The graph shown in figures 1.13 (a) and (b) are 2- regular and 4 - regular graph respectively.

Figure: 1.13

(a) (b)
The graph shown in figl.13 (c) is a 3-regular graph (cubic graph). This particular cubic graph, which
contains 10 vertices and 15 edges, is called the Peterson Graph.

Figure (¢) Figure (d)

The graph shown in fig (d) is a cubic graph with 8 =2* vertices. This particular graph is called the
three dimentional hyper cube and is denoted by Q3.

Handshaking property :
Let us refer back to degree of the graph shown in fig 1.14. we have, in this graph,

\"A V,
® /L
V. 2 V3

fig (1.14)
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d(Vi)=3,d(V2)=4,d(V3)=4,d(Vs) =3

Also,the graph has 7 edges, we observe that deg (V) + deg (V,) + deg (V3) +deg (V4)=14=2x7
Property: The sum of the degrees of all the vertices in a graph is an even number, and this number is
equal to twice the number of edges in the graph.
In an alternative form, this property reads as follows:

For a graph G = (V,E) Z deg(V)=2|E|
vEV

This property is obvious from the fact that while counting the degree of vertices, each edge is counted
twice (once at each end).
The aforesaid property is popularly called the ‘handshaking property’
Because, it essentially states that if several people shake hands, then the total number of hands shaken
must be even, because just two hands are involved in each hand shake.
Theorem : In every graph the number of vertices of odd degrees is even

Proof : Consider a graph with n vertices. Suppose K of these vertices are of odd degree so that
the remaining n-k vertices are of even degree. Denote the vertices with odd degree by V,V,,Vs,....... ,Vk
and the vertices with even degree by vi.1,vii2,.....,Vn then the sum of the degrees of vertices is

n k n
2 deg(v,) =D deg(v,)+ 3 deg(v)~—=~()
i=1 i=1 i=k+1

In view of the hand shaking property, the sum on the left hand side of the above expression is

equal to twice the number of edges in the graph. As such, this sum is even. Further, the second sum in
the right hand side is the sum of the degrees of the vertices with even degrees. As such this sum is also
even. Therefore, the first sum in the right hand side must be even; that is,
deg(V)) + deg(V,) + -- + deg (Vi) = Even—(i1)
But, each of deg(V)), deg(V>),....... ,deg (Vi) is odd. Therefore, the number of terms in the left hand side
of (i1) must be even; that is, K is even

Example : For the graph shown in fig 1.15 indicating the degree of each vertex and verify the
handshaking property

CHa
b
I
C (&
f \ / '
L
d
\/'h
g
Solution : By examiningigq(q_ggflph, we find that the degrees of its vertices are as given below:
deg (a) =3, deg (b) = 2, deg (c) = 4, deg (d) = 2, deg(e) = 0, deg (f) =2, deg (g) =2, deg (h) = 1.
We note that e is an isolated vertex and h is a pendant vertex.

Further, we observe that the sum of the degrees of vertices is equal to 16. Also, the graph has 8
edges. Thus, the sum of the degrees of vertices is equal to twice the number of edges.
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This verifies the handshaking property for the given graph.
Example : For a graph with n-vertices and m edges, if ¢ is the minimum and A is the maximum of

the degrees of vertices, show that 5< 2m <

Solution : Let di, da,....,ds, be the degrees of the vertices. Thﬁn,_léy handshaking property, we have
d+dy+d;+--—-- +d, =2m --——-—-- (1)

Since 6 = min(dy, ds,....,d,), we have d; >96,

d>6,....... ,dpn>06.

Similarly, since A =max (di, dy,....,dy), we get
di+dy+--—-—-+d, <nA ----(iii)
From (1), (i1) and (ii1), we get 2m>n d and 2m < nA , so thatn 6 <2m <nA,

or 2m

O<—=<A
V4

SUBGRAPHS

v V2

@): 6, fiy-(66)

Given two graphs G and G, we say that G; is a subgraph of G if the following conditions hold:
(1). All the vertices and all the edges of G, are in G.

(2). Each edges of G; has the same end vertices in G as in Gj.

Essentially, a subgraph is a graph which is a part of another graph. Any graph isomorphic to a
subgraph of a graph G is also referred to as a subgraph of G.

Consider the two graphs G; and G shown in figures 1.16(a) and 1.16(b) respectively, we observe
that all vertices and all edges of the graph G, are in the graphs G and that every edge in G; has same end
vertices in G as in Gj.Therefore G, is a subgraph of G .In the diagram of G ,the part G; is shown in thick
lines.

The following observation can be made immediately.

1) Every graph is a sub-graph of itself.

i1) Every simple graph of n vertices is a subgraph of the complete graph K.

ii1) If Gy is a subgraph of a graph G, and G; is a subgraph of a graph G,then G is a subgraph of a

graph G.
iv) A single vertex in a graph G is a subgraph of a graph G.
v) A single edge in a graph G together with its end vertices,is a subgraph of G
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SPANNING SUBGRAPH :

Given a graph G=(V, E), if there is a subgraph G,=(V,E;) of G such that V,=V then G, is called a
spanning subgraph of G.

In other words , a subgraph G; of a graph G is a spanning subgraph of G whenever the vertex set
of G, contains all vertices of G. Thus a graph and all its spanning subgraphs have the same vertex
set. Obviously every graph is its own spanning subgraph.

Flgure (1. 17

VANWA
N4

(a) (b) (c)
For example, for the graph shown in figl.17(a), the graph shown in fig 1.17(b) is a spanning
subgraph where as the graph shown in figl.17(c) is a subgraph but not a spanning subgraph

INDUCED SUBGRAPH
Given a graph G=(V,E), suppose there is a subgraph G;=(V,E;) of G such that every edge {A,B} of
G, where AB € V| is an edge of G; also .then G; is called an induced subgraph of G (induced by V))
and is denoted by <V >
It follows that a subgraph G;=(V,E;) of a graph G=(V,E) is not an induced subgraph of G, if for
some A,B € Vy,there is an edge{A,B} which is in G but not in Gj.
For example, for the graph shown in the figure 1.18 (a), the graph shown in the figure 1.18 (b), is an
induced subgraph, induced by the set of vertices V= {v;,v,,v3,vs} where as the graph shown in the
figure 1.18 (c) is not an induced subgraph

@ (c)

Figure 1.18 (a, b & ¢)

EDGE-DISJOINT AND VERTEX-DISJOINT SUBGRAPHS

Let G be a graph and G, and G, be two subgraphs of G. then

G and G; are said to be edge disjoint if they do not have any common edge.

G and G; are said to be vertex disjoint if they do not have any common edge and any common vertex.
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It is to be noted that edge disjoint subgraphs may have common vertices. Subgraphs that have no
vertices in common cannot possibly have edges in common.
For example ,for the graph shown in the figure 1.19 (a), the graph shown in the figurel.19 (b) and 1.19
(c) are edge disjoint but not vertex disjoint subgraphs.

Jl Figure 1.19:

ey
/

L A
(a) (c)
Example : For the graph shown in fig 1.20 ,find two edge-disjoint subgraphs and two vertex-
disjoint subgraphs .

Figure 1.20
hA—Q
R $ |

Solution:for the given graph, two edge-disjoint subgraphs are shown in fig 1.21(a) and two vertex-
disjoint subgraphs are shown in fig 1.21(b).
fig1.21

PJ. '  —— R'ﬂgﬁ |
i § $

(@) (b)

OPERATIONS ON GRAPHS

Consider two graphs G,=(V,E;) and G,=(V»,E,) then the graph whose vertex set is V;UV, and edge set
is E;UE; is called the union of G; and G; and is denoted by G;UG:.

Thus G]UGzz(VlUV2, E1UE2).

Similarly, if V,NV, # ¢,the graph whose vertex set is V;NV, and the edge set E;NE;, is called
intersection of G and G,.It is denoted by G;NG,.Thus GiNG,=(VNV,, EINEy), if VINV, # 6.
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Next suppose we consider the graph whose vertex set is V;UV; and edge set is E|AE, where E|AE; is
the symmetric difference of E; and E,.This graph is called the ring sum of G; and G,.It is denoted by
G]AGQ. Thus G]AGZ = (V1UV2, E]AEz).

For the two graphs G; and G, shown in figures 1.22 (a) and (b), their union ,intersection and ring sum
are shown in figures 1.23 (a), (b) and (c) respectively.

Fig 1.22
Vi V2 Wi ) Vo
V3
Vi V4 V4 8
@@:G (b): G,
Fig 1.23
v V) Vs Vi V2
V3
V.
Vs V4 V3 4

(@ HU G  voo—(bI¥Gn G,

ViV, Vs

Fig 1.23: (¢ )AL,

DECOMPOSITION

We say that a graph G is decomposed (or partitioned) in to two subgraphs G; & G, if G; U G, =
G & GNG; =null graph
DELETION:

If V is a vertex in a graph G, then G — V denotes the subgraph of G obtained by deleting V and
all edges incident in V, from G this subgraph G-u, is refered to as vertex deleted subgraph of G.

It should be noted that, the deletion of a vertex always results in the deletion of all edges incident
on that vertex.

If e is an edge in a graph G, then G-e denotes the subgraph of G obtained by deleting e (but not
its end vertices) from G. This subgraph, G-e, is referred to as edge — deleted subgraph of G. For the
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graph G shown in figure 1.24 (a), the subgraphs G-V and G-e are shown in figure 1.24 (b) and 1.24 (c)
respectively.

Figure 1.24 (a, b, )

N

COMPLEMENT OF A SUBGRAPH (c): G-e

Given a graph G and a subgraph G; of G ,the subgraph of G obtained by deleting from all the
edges that belongs to Gj is called the complement of G; in G;it is denoted by G-G; or G,

In other words ,if E; is the set of all edges of G, then the complement of G, in G is given by G| =
G-E;.We carr check that G1=GAG;. -
For example :

Consider the graph G shown in fig 1.25(a) .Let G, be the subgraph of G shown by thick lines in
this figure. The complement of G; in G, namely Gy, is as shown infig 1.25(b)

Fig. 1.25(a) Fig.1.25 (b)

COMPLEMENT OF A SIMPLE GRAPH
Earlier we have noted that every simple graph of order n is a subgraph of the complete graph Kn
If G is a simple graph of order n ,then the complement of G in K,, is called the complement of G, it is

denoted by G. —
Thus, the complement G of a simple graph G with n vertices is that graph which is obtained by

deleting those edges of Kn which belongs to G. Thus G =K,;-G =K,AG.
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Evidently K,, G and G have the same vertex set and two vertices are adjacent in G if and only if
they are not adjacent in G. Obviously, GTs also a simple graph and the complement of G is G that is G
=G — =

In fig 1.26(a), the complete graph K4 is shown. A simple graph G of order 4 is shown in fig
1.26(b). The complement G, of G is shown in fig 1.26(c).

Observe that G, G & K4 have the same vertices and that the edges of ‘G are got by deleting those
edges from K4 which belong to G.

Figure 1.26 a, b & C

Fig. (a): K, Fig. (b): G

In figl.27(a) ,a gfaph of order 6 iS shown as a subgraph of Ky ,the edges of G being shown in
thick lines .Its complement G, ﬁgs](qc(svei in figl.27(b).The graph shown in figl.27(b) is known as David

Graph.
Fig. 1.27

XX

Example 1.Show that the complement of a bipartite graph need not be a bipartite graph.
Solution: Fig 1.28(a) shows a bipartite graph which is of order 5.The complement of this graph is
shown in fig1.28(b),this is not a bipartite graph.

(a

Fig. 1.28(a) Fig. 1.28(b)
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Example 2.Let G be a simple graph of order n.If the size of graph G is 56 and size of is G 80.What is
n?

Solution:We know that G =K,-G therefore

Size of G = (Size of K,)- (Size of G)

Since size of K,, (ie the number of edges in K,,) is ¥2(n)(n-1),this yields

80= Y% n(n-1)-56

or n(n-1)=160+112=272=17x 16

thus, n =17, (that is, G is of order 17)

Example 3: Find the union, intersection and the ring sum of the graph G1 and G2 shown below.

Fig. 1.29(G) Fig. 1.29(G)
Solution : G, UG,
Union :-
Intersection : - G,n G,

Ring Sum : G, AN

Example 4: For the graph G shown below, find G-v and G-e .

/V

Fig 1.30
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Example 5: Find the complement of each of the following simple graphs

Fig. 1.32
(a) (b) (c)

Example 6: Find the complement of the complete bipartite graph K; 3
Solution :

Fig. 1.34

WALKS AND THEIR CLASSIFICATION
WALK:

Let G be a graph having atleast one edge. In G, consider a finite, alternating sequence of vertices

and edges of the form v; € Vit1 €j+1 Vi2,......ek Vm Which begin and ends with vertices and which is
such that each edge in the sequence is incident on the vertices preceding and following it in the
sequence. Such a sequence is called a walk in G. In a walk, a vertex or an edge (or both) can appear

more than once.
The number of edges present in a walk is called its ‘length’.

For example : Consider the graph shown below;
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Fig.1.35

In this graph,

i) The sequence vie; vac, v3,egve is a walk of length 3 (because this walk contains 3 edges; ej,ez,eg). In
this walk, no vertex and no edge is repeated.

ii) The sequence V1,4 V5€3 VoCrV3€5 V5€¢Vy is a walk of length 5. In this walk, the vertex v5 is
repeated; but no edge is repeated.

iii) The sequence V1€1V,€3V5€3V,€,V3 is a walk of length 4. In this walk, the edge €5 is repeated and

the vertex V, is repeated

A walk that begins and ends at the same vertex is called a closed walk. In other words, a closed
walk is a walk in which the terminal vertices are coincident.

A walk which is not closed is called an open walk. In other words, an open walk is a walk that
begins and ends at two different vertices.

For Example, in the graph shown in figure (1.35) Vv;€;VoC3Vs€4Vv) is a closed walk and
V1€1V2€2V3€5V5 is our open walk.
TRAIL AND CIRCUIT:

In a walk, vertices and /or edges may appear more than once, if in an open walk no edge appears

more than once, than the walk is called a trail. A closed walk in which no edge appears more than once
is called a circuit.

For example: In fig (1.35), the open walk V{€1V,€3V5€3V2€,V3 (shown separately in figure 1.36(a)

is not a trail (because, in this walk, the edge €3 is repeated) where as

Fig. 1.36 (a) :Not a trail

V, e, v
m V3
€,
€3
Vi
Fig. 1.36 (b): trail
V, €, Vs
V, \es
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The open walk V1€4V5€3V2VoV3€5V5€6V4 (shown separately in fig 1.36(b) is trail.
Also, in the same fig (ie., in figl.35), the closed walk V| €1V, €3 V5 €3 Vo €2 V3 €5 V5 €4
V1 (shown separately in fig 1.37(a) is not a circuit (because e is repeated) where as the closed walk

V1€1V2€3V5€5V3E€7V4€4V5€4V 1 (shown separately in figl.37(b)) is a circuit.

Fig. 1.37(a) Fig. 1.37(b)
v, A
V, €, A
€4 s e e,
e e;
Vi €, 5

PATH AND CYCLE:
(a): Not a circuit (b): Circuit
A trail in which no vertex appears more than once is called a path.
A Circuit in which the terminal vertex does not appear as an internal vertex (also) and no internal vertex
is repeated is called a ‘cycle’.

Fig. 1.39
(a): Path (a): Not a path
V2 () V3 V2
Vs
v M
€3 €5
€7
Vs * s e v,
(a): Cycle (b): Not a Cycle

For example, in figure (1.35), the trail V1€,€3V5€5V3€7V4 (shown separately in fig 1.38(a)) is a path
whole as the trail V{€4V5€3V2€,€5V5€4V4 (shown separately in fig 1.38(b) is not a path (because in
this trail, v5 appears twice).

Also, in the same fig, the circuit V,€,V3€5V5€3V, (shown separately in fig 1.39(a)) is a cycle
where as the circuit Vo€1V1€4V5€5V3€7V4E€6V5€3Vo (shown separately in fig 1.39(b) is not a cycle

(because, in this circuit, v5 appears twice)

Dept of CSE, SJBIT 30



Graph Theory and Combinatorics 10CS42

The following facts are to be emphasized.

1.

A walk can be open or closed. In a walk (closed or open), a vertex and / or an edge can appear
more than once.
A trail is an open walk in which a vertex can appear more than once but an edge cannot appear
more than once.

. A circuit is a closed walk in which a vertex can appear more than once but an edge cannot appear

more than once.
A path is an open walk in which neither a vertex nor an edge can appear more than once. Every
path is a trail; but a trail need not be a path.

. A cycle is a closed walk in which neither a vertex nor an edge can appear ore than once.

Every cycle is a circuit; but, a circuit need not be a cycle.
Example:
For the graph shown in figure1.40 indicate the nature of the following walks.

V1€1V2C, V36V

V4€7V1€1V2€2V3E€3V4C4 V5

V1€1V2€2V3€3V4€4V5

V1€1V2€,2V3€3V4C7V]

Ve€5V5€4V4€3V3C V€1V 1€7V4C Vg

Fig. 1.40
Ve v, e v,
€6
e €7 e,
A v v
Solution: % ©® ’
1. Open walk which is not a trail the edge e, is repeated.

wh Wb

Trail which is not a path (the vertex vy is repeated)

Trail which is a path

Closed walk which is a cycle.

Closed walk which is a circuit but not a cycle (the vertex vy is repeated)

EULER CIRCUITS AND EULER TRAILS.

Consider a connected graph G. If there is a circuit in G that contains all the edges of G. Than that

circuit is called an Euler circuit (or Eulerian line, or Euler tour) in G. If there is a trail in G that
contains all the edges of G, than that trail is called an Euler trail.
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Recall that in a trail and a circuit no edge can appear more than once but a vertex can appear

more than once. This property is carried to Euler trails and Euler Circuits also.

Since Euler circuits and Euler trails include all edge, then automatically should include all vertices as
well.
A connected graph that contains an Euler circuit is called a Semi Euler graph (or a Semi Eulerian
graph).
For Example, in the graph shown in figure 1.41 closed walk.
Pe;QesResPesSesReqTesP 1s an Euler circuit. Therefore, this graph is a an Euler graph.

Fig 1.41
P C4 S
€ e = .
7
Q e, R e T

Consider the graph shown in fig.1.41. We observe that, in this graph, every sequence of edges
which starts and ends with the same vertex and which includes all edges will contain at least one

repeated edge. Thus, the graph has no Euler circuits. Hence this graph is not an Euler graph.
Fig. 1.42

It may be seen that the trail Ae;Be;De;CesAesD in the graph in fig 1.42 is an Euler trail. This
graph therefore a Semi — Euler Graph.
Example 1: Show that the following graph contains an Euler Circuits

A B

P FigD43 R

Solution: The graph containas an Euler Circuit PAQBRQP
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Example 2: find an Euler circuit in the graph shown below.

Fig.1.44
\4 Va V3
Vo Vio Vit /] V4
SolutionVg \C' A Vs

6
V1VVgVioVaV11V7VioV14 VeV VoV VsVeV7Vg VgV

Example 3: show that the following graph contains an Euler trail.

Fig. (1.45)
Cy Q
© C
T e
3 e7
ez ] ]

S % R

Solution: the graph contains Pe;Te;SesPesQesSesRe;Qas an Euler trail.

ISOMORPHISM :

Consider two graphs G = ( V, E ) and G” = (V’, E’) suppose their exists a function f: V > V’
such that (i) fis a none to one correspondence and(ii) for all vertices A, B of G {A, B} is an edge of G
if and only if { f(A), f(B)} is an edge of G’, then f is called as isomorphism between G and G’, and we
say that G and G’ are isomorphic graphs.

In other words, two graphs G and G’ are said to be isomorphic (to each other) if there is a one to
one correspondence between their vertices and between their edges such that the adjacency of vertices is
preserved such graphs will have the same structures, differing only in the way their vertices and edges
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are labelled or only in the way they are represented geometrically for any purpose, we regard them as
essentially the same graphs.

When G and G’ are isomorphic we write G = G’

Where a vertex A of G corresponds to the vertex A’ = f(A) of G’ under a one to one correspondence f :
G =2 G’,we write A €> A’ Similarly, we write {A, B} €= {A’, B’} to mean that the edge AB of
G and the edge A’B’ of G’ correspond to each other, under f.

For example, look at the graphs shown in figl.46

Fig. 1.46
A B P Q
D C S R

Consider the following one to one correspondence between between the vertices of these two graphs.
AEC>P,BE2Q,C <> R, D> S

Under this correspondence, the edges in two graphs correspond with each other as indicated below:
{A,B} €2 {P,Q}, {A,C} «> {P,R}, {A,D} <> {P, S}

{B,C} €2 {Q,R}, {B,D} €= {Q, S}, {C,D} €= {R, S},

We check that the above indicated one to cone correspondence between the

Vertices / edges of the two graphs. Preserves the adjacency of the vertices. The existence of this
correspondence proves that the two graphs are isomorphic (note that both the graphs represent the
complete graph Ky).

Next, consider the graphs shown in figures 1.47 (a) and 1.47(b)

Fig. 1.47

We observe that the two graphs have the same mumber of vertices but different number of edges.
Therefore, although there can exist one-to-one correspondence between the vertices, there cannot be a
one-to-one correspondence between the edges. The two graphs are therefore not isomorphic.

From the definition of isomorphism of graphs, it follows that if two graphs are isomorphic, then
they must have
1. The same number of vertices.

2. The same number of edges.
3. An equal number of vertices with a given degree.
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These conditions are necessary but not sufficient. This means that two graphs for which these
conditions hold need not be isomorphic.
In particular, two graphs of the same order and the same size need not be isomorphic. To see this,
consider the graphs shown in figures 1.48(a) and (b).

Fig.1.48(a)

Fig. (a) Fig. (b) . .
We note that both graphs are of order 4 and size 3. But the two graphs are not isomorphic.
Observe that there are two pendant vertices in the first graph where as there are three pendant vertices in
the second graph. As such, under any one-to-one correspondence between the vertices and the edges of
the two graphs, the adjacency of vertices is not preserved

Example 1:
Prove that the two graphs shown below are isomorphic.
Fig.1.49
U, U, v, v,
U U, o v
3 V3 Fig. (b) !

Fig. (a)

Solution: We first observe that both graphs have four vertices and four edges. Consider the following
one — to- one correspondence between the vertices of the graphs.
U <> Vi, U2 <> V4, U3 <> Vi3, Ug <> Va.
This correspondence give the following correspondence between the edges.
{fu,up} €2 {vi,va}, {uus} €2 {v,vs}
{U.Q,Il4} <> {V4,V2}, {U.3, U.4} <> {V3, Vz}.

These represent one-to-one correspondence between the edges of the two graphs under which the
adjacent vartices in the first graph correspond to adjacent vertices in the second graph and vice-versa.
Example 2: Show that the following graphs are not isomorphic.

Fig. 1.50

<>
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Solution: We note that each of the two graphs has 6 vertices and nine edges. But, the first graph has 2
vertices of degree 4 where as the second graph has 3 vertices of degree 4. Therefore, there cannot be
anyone-to-one correspondence between the vertices and between the edges of the two graphs which
preserves the adjacency of vertices. As such, the two graphs are not isomorphic.
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UNIT 2

PLANAR GRAPHS:

It has been indicated that a graph can be represented by more than one geometrical drawing. In
some drawing representing graphs the edges intersect (cross over) at points which are not vertices of the
graph and in some others the edges meet only at the vertices. A graph which can be represented by at
least one plane drawing in which the edges meet only at vertices is called a ‘planar graph’

On the other hand, a graph which cannot be represented by a plane drawing in which the edges
meet only at the vertices is called a non planar graph.

In other words, a non planar graph is a graph whose every possible plane drawing contains at
least two edges which intersect each other at points other than vertices.

Example 1

Show that (i) a graph of order 5 and size 8, and (ii) a graph of order 6 and size 12, are planar
graphs.

Solution: A graph of order 5 and size 8 can be represented by a plane drawing

Fig. 2.1

Fig. (a) Fig. (b)
In which the edges of the graph meet only at the vertices, as shown in fig. 2.1 (a) therefore, this

graph is a planar graph. Similarly, fig. 2.1(b) shows that a graph of order 6 and size 12 is a planar graph.
Example 2:
Show that the complete graphs K,,K3 and K4 are planar graphs.

Fig. 2.2
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Solution: the diagrams in fig 2.2 represent the graphs K,,K3,K4. In none of these diagrams, the edge
meet at points other than the vertices. Therefore K,, K3, K4 are all planar graphs.

Example 3:

Show that the bipartite graphs K, , and K, 3 are planar graphs.

Fig. 2.3
\4 Vv,
v
3@ v, VVS
v, v,
(arkK,, (a): Ky 5

Solution: In K, ,, the vertex set is made up of two bipartites V,V,, with V; containing two vertices say
V1,V; and V; containing two vertices, say V3,V4, and there is an edge joining every vertex in V| with
every vertex in V; and vice-versa. Fig 2.3(a) represents this graph. In this fig. the edges meet only at
the vertices therefore, K, » is a planar graph.

In K, 5 the vertex set is made up of two bipartites V; and V,, with V; containing two vertices, say
V1,V,, and V, containing three vertices, say V3,V4,Vs and there is an edge joining every vertex in V;
with every vertex in Vyand Vice Versa. Fig. 2.3(b) represents this graph. In this figure the edges meet
only at the vertices, therefore K, 3 is a planar graph.
Example4:

Show that the complete graph Ks (viz., the Kuratowskis first graph) is a non planar graph.
Solution:

We first recall that in the complete graph Ks there are 5 vertices and there is an edge between

every pair of vertices, totaling to 10 edges. (see fig. Ref. complete graph). This fig is repeated below
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In the above drawing of Ks, the five edges ej,es,es €19,e4 form a pentagonal cycle and the
remaining five edges €,,€3,€4,€7,€9 are all
Inside this cycle and intersect at points other than the vertices.

Let us try to draw a diagram of K5 in which the edges meet ony at the vertices. In the pentagonal
cycle present in fig (2.4) the edges meet only at the vertices. Let us start our new drawing of Ks with

this cycle: the cycle is shown in fig. 2.5 (a)

Fig. 2.5

Fig. (a) Fig. (b)

Consider the edge e; = {V,Vs}. This edge can be drawn either inside or outside the pentagonal
cycle. Suppose we draw it inside, as shown in fig. 2.5 (b) the other case is similar now, consider the
edges e; = {VV3} & e3 = {VV4}. If we draw these edges also inside the pentagon, they will intersect
e7, that is, they cross e; at points, which are not vertices, therefore, let us draw of them outside: see fig.
2.5 (b).

Next consider the edge es = {V,,V4} if we draw this edge outside the pentagon intersects the
edge e;; see fig 2.5(b) therefore let us draw €6 inside the pentagon.

Lastly, consider the edge eo = {V3,Vs}If we draw this edge outside the pentagon, it intersects the
edge e, and if we draw it inside, it intersects the edge e.

This demonstrates that in every possible plane drawing of Ks at least two edges of Ks intersect at a point
which is not a vertex of Ks.

This proves that Ks is a non planar graph.

Example 5:

Show that the complete bipartite graph K33 (namely the Kuratowski’s second graph) is a non-
planar graph.
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Solution:
by definition, Ks 3 is a graph with 6 vertices and 9 edges, in which the vertex set is made up of
two bipartites V; and V, each containing three vertices such that every vertex in V; is joined to every

vertex in V; by an edge and vice-versa.

Fig. 2.6

\G V2

Let us name the vertices in V; as vi,v,,v3 and the vertices inV; as v4,vs,ve. Also let the edges be
named as €1,€5,€3,....... 9.

A diagram of the graph is shown in fig (2.6). In this diagram of K3 3. the six edges e; = {vi,v4},
es={vava}, €5 ={Vvavs}, es={Vs,v3} €9={V3,vs} and es={ve,v;} form a hexagonal cycle and the remaining
three edges e»,eq,e7 either intersect these edges or intersect among themselves at points other than the
vertices.

Let us try to draw a diagram of K3,3 in which no two of its edges intersect. The hexagonal cycle
present in fig.2.6 does not contain any mutually intersecting edges. Let us start our new drawing of K3 3

with this cycle. This cycle is exhibited separately in fig. 2.7 (a)

Fig. 2.7

Fig. (a) Fig. (b)

Consider three edge ec={vy,v¢} this edge can be drawn either inside the hexagonal cycle or
outside it. Let us draw it inside (as shown in fig.2.7 (b) the other case is similar. Now consider the edge
e, = {vi,vs}. If we draw this edge the hexagon, it intersects the edges es. Therefore, let us draw it

outside the hexagon see fig. 2.7 (b)
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Next consider the edge e; ={vs,v4}. If this edge is drawn inside the hexagon, it intersects the
edgte eq, and if it is drawn outside the hexagon, it intersects the edge e,
This demonstrates that in every possible plane drawing of Ks 3, at least two edges of K; 3 intersect at a
point which is not a vertex of K3 3. this proves that K3 3 is a non planar graph.
Example 6
Suppose there are three houses and three utility points (electricity, water sewerage, say) which are
such that each utility point is joined to each house. Can the lines of joining be such that no two lines

cross each other ?

Fig. 2.8
h, h, hy
U u, U,

Solution:

Consider the graph in which the vertices are the three houses (h;,h,h3) and the three utility points
(ur,uz,u3). Since each house is joined to each utility point. The graph has to be K3 3 (see fig. 2.8). This
graph is non-planar and therefore, in its plane drawing, at lest two of its edges cross each other. As
such, it is not possible to have the lines joining the houses and the utility points such that no two lines
cross each other.

HAMILTON CYCLES AND HAMILTON PATHS

Let G be a connected graph. If there is a cycle in G that contains all the vertices of G, then that
cycle is called a ‘Hamilton Cycle’ in G.
A Hamilton cycle in a graph of n vertices consists of exactly n edges, because, a cycle with n vertices
has n edges.

By definition, a Hamilton cycle in Graph G must include all vertices in G, This does not mean
that it should include all edges of G.
A graph that contains a Hamilton cycle is called a Hamilton graph (or Hamiltonian graph).
For example, in the graph shown in fig. (2.7), the cycle shown in thick lines is a Hamilton cycle.

(observe that this cycle does not include the edge BD). the graph is therefore a Hamilton graph.
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D C
Fig.2.7

A path (if any) in a connected graph which includes every vertex (but not necessarily every edge) of the

graph is called a Hamilton / Hamiltonian path in the graph.
For example: In the graph shown in fig (2.8), The path shown in thick lines is a Hamilton path.

A B

D Fig 28— C
In the graph shown in fig. (2.9), the path ABCFEDGHI is a Hamilton path. We check that this

graph does not contain a Hamilton cycle.

A B C
D E F
G H
fig. (2.9)

Since a Hamilton path in a graph G meets every vertex of G, the length of a Hamilton path (if
any) in a connected graph of n vertices is n-1 (a path with n vertices has n-1 edges)
Theorem 1:

If in a simple connected graph with n vertices (where n > 3) The sum of the degrees of every pair
of non-adjacent vertices is greater than or equal to n, than the graph is Hamiltonian.
Theorem 2:

If in a simple connected graph with n vertices (where n > 3) the degree of every vertex is greater
than or equal to n/2. then the graph is Hamiltonian .
Proof:If in a simple connected graph with n vertices, the degree of each vertex is greater than or equal to
n/2. then the sum of the degrees of every pair of adjacent or non-adjacent vertices is greater than or
equal to n, therefore, the graph is Hamiltonian (by Them 1).

Example 1:
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Prove that the complete graph K, where n > 3, is a hamilton graph.
Solution: In K, the degree of every vertex is n-1, if n > 3, we have n-2 > 0, or 2n-2 > n, or (n-1) >n /2.
Thus, in K;,, where n > 3, the degree of every vertex is greater than n/2. Hence K,, is Hamiltonian by
Them. 2.
Example 2:

Show that every simple K - Regular graph with 2K-1 wvertices is Hamiltonian.
Solution: In a K - Regular graph , the degree of every vertex is K, and K>K -1/2=1/2 2K -1)=1/2
n. Where n = 2K-1 is the number of vertices, therefore, by Them. 2, the graph considered is

Hamiltonian if it is simple.

Example 3:
Disprove the converses of theorems 1 and 2.

Solution: Consider a 2 — Regular graph with n=5, vertices, shown in fig. (2.10)
Fig. 2.10

Evidently, this graph is Hamiltonian. But the degree of every vertex is 2 which is less than n/2
and the sum of the degrees of every pair of vertices is 4 which is less than n.
Thus, the  converses of  theorems 1 & 2 are  not  necessarily  true.
Example 4:

Let G be a simple graph with n vertices and m edges where m is at least 3. if m> 1/2 (n-1)(n-
2)+2. Prove that G is Hamiltonian. Is the converse true?
Solution :

Let u & v be any two non-adjacent vertices in G. Let x & y be their respective degrees. If we
delete u,v from G, we get a subgraph with n-2 vertices. If this subgraph has q edges, then q < 1/2 (n-
2)(n-3). [in a simple graph of order n, the number of edges is < 1/2n(n-1)] since u and v are non
adjacent.
m =q + x +y, Thus

X+ty=m-q
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>{1/2 (n-1)(n-2)+2} - {1/2(n-2)(n-3)}
=n

Therefore, by Theorem I, the graph is Hamiltonian.
The converse of the result just proved is not always true. Because, a 2- Regular graph with five vertices
shown in fig (2.10) is  Hamiltonian but the inequality does not  hold.
Example 5: Show that the graph shown in fig (2.11) is a Hamilton graph.

A Fig. 2.11 .

Solution:

By examining the given graph, we notice that in the graph there is a cycle
AELSMNPQRCDFBA which contains all the vertices of the graph. this cycle is a hamiltonian cycle.
since the graph has Hamiltonian cycle in it. The graph is a Hamiltonian graph.

Example 6:

Exhibit the following.
(a): A graph which has both an Euler Circuit and a Hamilton cycle.
Solution:

The graph shown is the required graph.

Fig. (a)

(b) : A graph which has an Euler circuit but no Hamilton cycle.
Solution: The graph shown is the required graph.

Fig. (b)
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(C) A graph which has a Hamilton cycle but no Euler Circuit.

Fig. (c)

(d): A graph which has neither a Hamilton cycle nor an Euler circuit.

Fig. (d)

The following theorem contains useful information on the existence of Hamilton cycle in the complete
graph K.
Theorem 3: In the complete graph with n vertices, where n is an odd number > 3, there are (n-1) / 2
edge - disjoint Hamiltonian cycles.
Proof:

Let G be a complete graph with n vertices, where n is odd and > 3. Denote the vertices of G by
1,2,3.....n and Represent them as points as shown in fig. (2.12)

We note that the polygonal pattern of edges from vertex 1 to vertex n as depicted in the fig is a
cycle that includes all the verticEd®fA512This cycle is therefore a Hamilton cycle. This representation
demonstrates that G has at least one Hamilton cycle. (In the fig (2.12)), the vertex 1 is at the centre of a

circle and the other vertices are on its circumference. The circle is dotted.
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Now, rotate the polygonal pattern clockwise by o, 0, 0, .... ak degrees where a; = 360°/n-1,
o, =2.360%n- 1, az=3.360"n-1, ...o4=(n-3)/2.  360° /n-1

Each of these K = (n-3)/2 rotations gives a Hamilton cycle that has no edge in common with any
of the preceding ones. Thus, there exists k = (n-3)/2, new Hamilton cycles, all edge - disjoint from the
one shown in fig (2.12) and also edge - disjoint among themselves thus, in G, there are exactly.
1+K =1+ (n-3)/2=1/2 (n-1)
Mutually edge —disjoint Hamilton cycle.
This completes the proof of the theorem.
Example 7:

How many edge - disjoint Hamilton cycles exist in the complete graph with seven vertices?
Also, draw the graph to show these Hamilton cycles.
Solution:

According to theorem 3, the complete graph K, has (n-1)/2 edge - disjoint Hamilton cycles when
n >3 and n is add. When n =7, their number is (7-1)/2 = 3. As indicated in the proof of Theorem 3 .

One of these Hamilton cycles appears as shown in fig (2.13)

The other two cycles are got by rotating the above shown cycle clock wise through angles.

o =360°7-1, =60, and o, = 2(360")/7-1, = 120°

TRAVELING -SALESMAN PROBLEM :

A problem closely related to the question of Hamiltonian circuits is the traveling sales man problem,
stated as follows: A sales man is required to visit a number of cities during a trip, given the distances
between the cities, in what order should be travel so as to visit every city precisely once and return
home, with the minimum mileage traveled ?

Representing the cities by vertices and the roads between them by edges, we get a graph. In this graph,
with every edge e; there is associated a real number (the distance in miles, say), w(e;) such a graph is

called a weighted graph; w(e;) being the weight of edge e;.

Dept of CSE, SJBIT 46



Graph Theory and Combinatorics 10CS42

In our problem, if each of the cities has a road to every other city, we have a ‘complete weighted
graph’. This graph has numerous Hamiltonian circuits, and we are to pick the one that has the smallest
sum of distances (or weights)

The total number of different (not edge - disjoint, of course) Hamiltonian circuits in a complete
graph of n vertices can be shown to be (n-1)!/2.

This follows from the fact that starting from any vertex we have n-1 edges to choose from the
first vertex, n-2 from the second, n-3 from the third, and so on. These being independent choices.

We get (n-1)! possible number of choices. This number is, however, divided by 2, because each
Hamiltonian circuit has been counted twice.

Theoretically, the problem of the traveling salesman can always be solved by enumerating all (n-
1)! /2 Hamiltonian circuits, calculating the distance traveled in each, and then picking the shortest one.
However for a large value of n, the labor involved is too great even for a digital computer (try solving it
for the 50 state capitals in the united states: n = 50).

The problem is to prescribe a manageable algorithm for finding the shortest route. No efficient
algorithm for problems of arbitrary size has yet been found, although many attempts have been made.
Since this problem has applications in operations research, some specific large - scale examples have
been worked out. There are also available several heuristic methods of solution that give a route very

close to the shortest one.
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Various types of walks

Discussed in this chapter are summarized in fig (2.14). The arrows point in the direction of increasing

restriction.
Walk
[ Path ] [Unicursal Line] [ Circuit ]
I.{ Hamiltonian Path ’ I.[ Hamiltonian Circuit ’ Arbitrarily Traceable
Fig. 2.14 Different Types of Walks
GRAPH COLORING:

Given a planar or non-planar graph G, if we assign colors (colours) to its vertices in such a way
that no two adjacent vertices have (receive) the some color , then we say that the graph G is Properly
colored.

In otherwords, proper coloring of a graph means assigning colors to its vertices such that

adjacent vertices have different colors.

Green Blue Blue

Blue Red Green Red Red Red
Green Yellow Green
Red
Red Blue
Fig. 2.15

In fig. (2.15), the first two graphs are properly colored where as the third graph is not properly
colored.

By Examining the first two graphs in fig (2.15) which are properly colored , we note the
following
1) A graph can have more than one proper coloring.

i1) Two non—adjacent vertices in a properly colored graph can have the same color.
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CHROMATIC NUMBER:

A graph G is said to be K—colorable if we can properly color it with K (number of) colors.
A graph G which is K—colorable but not (K-1) — colorable is called a
‘K — Chromatic graph’.

In otherwords, a K—Chromatic graph is a graph that can be properly colored with K colors but
not with less than K colors.

If a graph G is K—Chromatic, then K is called the chromatic number of G. Thus, the chromatic
number of a graph is the minimum number of colors with which the graph can be properly colored. The
chromatic number of a graph G is usually denoted by ¥ (G).

SOME RESULTS:
1) A graph consisting of only isolated vertices (ie., Null graph) is 1-Chromatic (Because no two
vertices of such a graph are adjacent and therefore we can assign the same color to all vertices).
i1) A graph with one or more edges is at least 2 -chromatic (Because such a graph has at least one
pair of adjacent vertices which should have different colors).
ii1)  Ifa graph G contains a graph G; as a
subgraph, then
% (G) = (Gy).
iv.  If Gis a graph of n vertices, then y (G) < n.
V. x (Ky) =n, for all n > 1. (Because, in K;,, every two vertices are adjacent and as such all the n
vertices should have different colors)
Vi. If a graph G contains K;, as a subgraph, then x (G) > n.

Example 1: Find the chromatic number of each of the following graphs.

Fig. 2.16
V,

Vi A A
Vs Vs Vs 8
’ l'
V,
V.
\A/ v 3
2 ,
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Solution :

i) For the graph (a), let us assign a color a to the vertex V, then for a proper coloring, we have to assign
a different color to its neighbors V,,V4,Vg, since V,, V4, V¢ are mutually non-adjacent vertices, they can
have the same color as V;, namely a.

Thus, the graph can be properly colored with at lest two colors, with the vertices V,V3,Vs
having one color o and V,,V4,V¢ having a different color B . Hence, the chromatic number of the graph
is 2.

ii) For the graph (b) , let us assign the color a to the vertex V;. Then for a proper coloring its
neighbours V,,V; & V4 cannot have the color a.

Further more, V;, V3,V4 must have different colors, say B, v, & .Thus, at least four colors are
required for a proper coloring of the graph.

Hence the chromatic number of the graph is 4.
iii) For the graph (c) , we can assign the same color, say a, to the non-adjacent vertices Vi, V3, Vs.

Then the vertices V,,V4,V¢ consequently V; and Vg can be assigned the same color which is
different from both o and B . Thus, a minimum of three colors are needed for a proper coloring of the
graph. Hence its chromatic number is 3.

Example 2: Find the chromatic numbers of the following graphs.

Fig. 2.17

Flg 2,17 @) Fig. 2.17 (b)
Solution (i):

We note that the graph (a) is the Peterson graph. By observing the graph, we note that the
vertices V1,V3,Vg and V5 can be assigned the same color, say oo . Then the vertices V,,V4, Vg and Vo
can be assigned the same color, B (other than a) . Now, the vertices Vs and Vo have to be assigned
colors other than o and  ; they can have the same color y. Thus, a minimum of three colors are

required for a proper coloring of this graph. Hence, the chromatic number of this graph is 3.
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Solution (ii) :

By observing the graph (b),(this graph is called the Herscher graph),we note that the vertices
Vi, V3, Vs, Vg and V|, can be assigned the same color a and all the remaining vertices: V,,V4, V7,Vs, Vo
and V can be assigned the same color § (other than a). Thus two colors are sufficient
(one color is not sufficient ) for proper coloring of the graph. Hence its chromatic number is 2.
Example (3):

Prove that a graph of order n (> 2) consisting of a single cycle is 2—chromatic if n is even and 3 —
chromatic if n is odd.
Solution:

The graph being considered is shown as below.

Fig. 2.18

Obviously, the graph cannot be properly colored with a single color. Assign two colors
alternatively to the vertices, starting with V. Then, the odd vertices, Vi, V3, Vs etc., will have a color o
and the even vertices V,, V4, V¢ will have a different color B. Suppose n is even, then the vertex V,, is
an even vertex and therefore will have the color B, and the graph gets properly colored therefore, the
graph is 2—chromatic

Suppose n is odd, then the vertex V,, is an odd vertex and therefore will have the color a and the
graph is not properly colored (because, then the adjacent vertices V, and V; will have the same color
o). To make it properly colored, it is enough if V,, is a assigned a third color, y. Thus, in this case, the

graph is 3-chromatic.
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Example 4:

Prove that a graph G is 2—chromatic if and only if it is non — null bipartite graph.
Solution:

Suppose a graph G is 2 - chromatic. Then it is non-null and some vertices of G have one color,
say o and the rest of the vertices have another color, say B .Let V; be the set of vertices having color a
and V; be the set of vertices having color B .Then V,U V, =V. The vertex set of G, and VN V, =D .
Also, no two vertices of V; can be adjacent and no two vertices of V, can be adjacent. As such, every
edge in G has one end in V; and the other end in V, Hence G is bipartite graph.

Conversely, suppose G is a non- null bipartite graph. Then the vertex set of G has two bipartites
V; and V; such that every edge in G has one end in V; and another end in V,. Consequently, G cannot
be properly colored with one color ; because then vertices in V| and V, will have the same color and
every edge has both of its ends of the same color. Suppose we assign a color a to all vertices in V; and a
different color B to all vertices in V,. This will make a proper coloring of V. Hence G is 2- Chromatic.
Example S :

If A (G) is the maximum of the degrees of the vertices of a graph G, then prove that % (G) < 1+
A(G). (1)
Solution:

Suppose G contains n = 2 vertices, then the degrees of both the vertices is 1, so that A (G) =1
,also y (G) =2 .Hence y (G) = 1+ A (G).
Thus, the required inequality (i) is verified for n=2.
Assume that the inequality is true for all graphs with K- vertices. Consider a graph G” with K + 1
vertices. If we remove any vertex v from G’ then the resulting graph H will have K vertices and A (H)
< A(G") .since H has K vertices, the inequality (i) holds for H (by the assumption made). Therefore, y
(H) < 1+ A (H). since A (H) <A(G"), this yields y (H) < 1+A(G")

Now, a proper coloring of G” can be achieved by retaining the colors assigned to the vertices in

H and by assigning a color to V that is different from the colors assigned to the vertices adjacent to it.
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V, v,
\Z Vv,
Fig. (a): G’ Fig. (b): H
The color to be assigned to V can be one of the colors already assigned to a vertex in H that is
not adjacent to V. Thus, a proper
Coloring of G'can be done without the use of a new color.
Hence 3 (G’) = y (H) < 1+ A(G’).

Thus, if the inequality (1) holds for all graphs with K vertices, it holds for a graph with K + 1
vertices.Hence, by induction, it follows that the inequality (1) holds for all graphs .

EULER’S FORMULA

If G is a planar graph, then G can be represented by a diagram in a plane. In which the edges
meet only at the vertices. Such a diagram divides the plane in to a number of parts called regions (or
faces), of which exactly one part is unbounded. The number of edges that form the boundary of a region
is called the degree of that region.

For example, in the diagram of a planar graph shown in fig. (2.20) the diagram divides the plane
into 6 regions R;,R,,R3,R4,R5,Rs. We observe that each of the regions R; to Rsis bounded and the region
R6 is unbounded. That is, R; to Rs are in the interior of the graph while Rg is in the Exterior.

Fig. 2.20

We further observe that, the fig (2.20) the boundary of the region R, is made up of two edges.
Therefore, the degree of R; is 2. We write this as d(R;) = 2. The boundary of each of the regions R, and

Dept of CSE, SJBIT 53



Graph Theory and Combinatorics 10CS42

R4 is made up of 3 edges; therefore, d(R;) = d(R4) = 3. The boundary of the region R3 consists of 4
edges of which one is pendant edge.

Therefore, d(R3) =5. The region Rs is bounded by a single edge (loop) therefore, d(Rs)=1.The
boundary of the exterior region R consists of six edges;therefore,d(Rs) = 6.

We note that
d(R;) +d(R,) +d(R3)+d(R4)*+d(R5)+d(Rs)=20.

Which is twice the number of edges in the graph. This property is analogous to the handshaking
property and is true for all planar graphs.

It should be pointed out that the regions are determined by a diagram of a planar graph and not
by the graph itself. This means that if we change the diagram of the graph, the regions determined by the
new diagram will be generally different from those determined by the old one in the sense that the
unbounded region in the old diagram need not be unbounded in the new diagram. However, the
interesting fact is that the total number of regions in the two diagrams remains the same.

The proof of this fact is contained in the following Euler’s fundamental theorem on planar
graphs.

Theorem:

A connected planar graph G with n vertices and m edges has exactly m — n +2 regions in all of its
diagrams.

Proof:

Let r denote the number of regions in a diagram of G. The theorem states that,

r=m-nt2,orn-m+r=2 ............ (1)

We give the proof by induction on m.

If m =0, then n , must be equal to 1. Because , if n >1, then G will have

at least two vertices and there must be an edge connecting them (because G is connected), so that m # 0
, which is a contradiction.

If n=1, a diagram of G determines only one region — the entire plane region (as shown in fig 2.21 (a)).

Thus,ifm=0,thenn=1andr=1, so that n-m +r=2. This verifies the theorem for m = 0.
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Fig. 2.21
I.?oo R°° /44

. < :
(a) (b)

Now, assume that the theorem holds for all graphs with m=k number of edges, where k is a non-
negative integer.

Consider a graph Gy with k +1 edges and n vertices. First, suppose that Gy has no cycles in it.
Then a diagram of G+ will be of the form shown in fig. 2.21 (b) in which the number of vertices will be
exactly one more than the number of edges, and the diagram will determine only one region—the entire
plane region (as in fig. 2.21 (b)). Thus for G k1, we have, in this case, n = (k+1)+1 and r = 1, so that

n— (kt1)+r=2.

This means that the result (1) is true when m=k+ 1 as well, if G k+1 contains no cycles in it.

Next, suppose G+ contains at least one cycle. Let r be the number of regions which a diagram
of Gy+ determine. Consider an edge ‘e © in a cycle and remove it from Gys;. The resulting graph, Gy —
e, will have n vertices and (k+1)-1=k edges, and its diagram will determine r-1 regions. Since Gy:j— e
has k edges, the theorem holds for this graph (by the induction assumption made).
That is we have

r- 1=k-n+2, orn—(k+ I)+r =2

This means that in this case also the result (1) is true when m =k + 1 as well.
Hence, by induction, it follows that the result (1) is true for all non— negative integers m. This
completes the proof of the theorem.
Corollary 1 :

If G is connected simple planar graph with n( >3) vertices, m (>2) edges and r regions, then (i)
m> (3/2)r and (ii)) m < 3n-6.
Proof:

Since the graph G is simple, it has no multiple edges and no loops. As such, every region must be
bounded by three or more edges. Therefore, the total number of edges that bound all the regions is

greater then or equal to 3r.On the other hand, an edge is in the boundary of at most two regions.
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Therefore, the total number of edges that bound all regions is less than or equal to 2m.Thus,3r < 2m. or
m > (3/2)r

This is required result (1) .

Now, substituting for r from Euler’s formula in the result just proved, we get m> 3 /2 (m-n+2)

Which simplifies to m < 3n-6. This is required result (ii)

Corollary 2:

Kuratowski’s first graph, K5, is non-planar.
Proof:

The graph Ks is simple, connected and has n = 5 vertices and m = 10 edges; refer to figure
Kuratowski’s first graph. If this graph is planar, then by result (ii) of Corollary 1, we should have m <
3n—6; thatis 10 < 15 - 6, which is not true. Therefore, K5 is non — planar
Corollary 3:

Kuratowski’s second graph, K3 3, is non-planar.
Proof: We first note that Kj3 is simple, connected and has n = 6 vertices and m = 9 edges; see fig
Kuratowski’s second graph.
Suppose K33 is planar. By examining the figure Kuratowski’s graph, we note that K; 3 has no cycles of
length 3. Therefore by result (iii) of Corollary 1, we should have m < 2n —4; that is, 9 <12 — 4, which
is not true. Hence, K3 3is non — planar.
Corollary 4:

Every connected simple planar graph G contains a vertex of degree less than 6.
Proof:

Suppose every vertex of G is of degree greater than or eual to 6.Then,if d;,d,,...... dn are the
degrees of the n vertices of G,we have d; > 6,d, >6,....... d,>6.
Adding these, we get
di+dyt...... +d, >6n.

By handshaking property, the left hand side of this inequality is equal to 2m,where m is the
number of edges inG,thus,2m >6n, or 3n < m.

On the other hand ,by the result(ii)of corollary 1,(Result (ii) ie m< 3n-6).
We should have m < 3n-6.Thus, 3n < m < 3n-6.This cannot be true.
Therefore, G must have a vertex of degree less than 6.

Example 1:
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Verify Euler’s formula for the planar graph shown in figure 2.20.
Solution:
The given graph has n=6 vertices, m=10 edges and r=6 regions. Thus,
n-m+r=6-10+6=2.
The Euler’s formula is thus verified for the given graph.
Example 2:

Verify Euler’s formula for the planar graphs shown below:

Fig. (a) Fig. 2F'izgz- (b)

Solution:

We observe that the first of the given graphs has n = 17 vertices, m = 34 edges and r = 19
regions. Thus,n—-m+r=17-34+19=2.
In the second of the given graphs, there are n = 10 vertices, m = 24 edges and r = 16 regions, so that n —
m+r=10-24+16=12.
Thus, for both of the given graphs, Euler’s formula is verified.
Example 3:

For the diagram of a planar graph shown below, find the degrees of regions and verify that the

sum of these degrees is equal to twice the number of edges

Ri
R4

Fig. 2.23

Solution:
The diagram has 9 edges and 4 regions. The region R; is bound by three edges. Therefore,
d(R;)=3. Similarly, d(R,)=5, d(R3)=3.
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The infinite region R4 is bound by 5 edges plus a pendant edge. Therefore,d(R4)=7. (Recall that
while determining the degree of a region, a pendant edge is counted twice).
Accordingly,

dRy) +d([Ry) +d(R3)+d(Ry) = 18

= twice the no. of edges.

Example 4:

A connected planar graph has 9 vertices with degrees 2,2,3,3,3,4,5,6,6.Find the number of
regions of G.
Solution:

The given graph has n = 9 vertices. Let m be the number of edges and r be the number of
regions.

Therefore by the Handshaking property, we have

2m = sum of degrees of vertices

= 2+2+3+34+3+4+5+6+6
= 34.
Therefore, m = 17.
By using Euler’s formula, we find that
r=m-n-+2.
=17-9+2 =10

Thus, the given graph has 10 regions.

Example 5:
Show that every connected simple planar graph G with less than 12 vertices must have a vertex
of degree < 4.
Solution:
Suppose every vertex of G has degree greater than 4. Then, if dj, do, d3 d4, ........... d, are the
degrees of n vertices of G, we have
dy >5,d,>5,...... d, >5 so that,
ditdytrdz+dg ..., dy, >5n, or 2m > 5n,by hand shaking property,
or5Sn/2 < m............ (1)

On the other hand, Corollary 1 requires m < 3n-6. Thus, we should have, in view of (i), 5n/2 <

3n—6 orn>12........ (i1)
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Thus, if every vertex of G has degree greater than 4, then G must have at least 12 vertices.
Hence, if G has less than 12 vertices, it must have a vertex of degree < 4.
Example 6:

Show that if a planar graph G of order n and size m has r regions and k components, then n — m +

r=k+1.

Solution:

let Hy, Ho, ......... Hy be the k components of G. Let the number of vertices, the number of edges
and the number of non — exterior regions in H; be N, M;, I; respectively, i=1,2........... k. the
exterior region is the same for all components. Therefore. ) n;=n, Ymij=m, )y =r—1.

If the exterior region is not considered, then the Euler’s formula applied to Hi yields
nj—m;+r =1.
On summation (from i =1 to i = k), this yields

n-m+(r—-1)=k, orn—-m+r=k+1.

2.5.1 Chromatic Polynominals:

Given a connected graph G & A number of different colors, let us take up the problem of finding
the number of different ways of properly coloring G with these A colors.

First, consider the null graph N, with n vertices. In this graph, no two vertices are adjacent.
Therefore, a proper coloring of this graph can be done by assigning a single color to all the vertices.
Thus, if there are A number of colors, each vertex of the graph has A possible choices of colors assigned
to it, and as such the graph can be properly colored in A" different ways

Next consider the complete graph K,,. In this graph, every two vertices are adjacent, and as such
there must be at least n colors for a proper coloring of the graph. If the number of different colors
available is A, then the number of ways of properly coloring K, is

(1) Zero if A <n,
(i1) One if A =n,
(iii))  Greater than 1 if A >n.

Let vy, vo, v3....vn be the vertices of K, and suppose A > n.
For a proper coloring of K, the vertex v, can be assigned any of the A colors, the vertex v, can

be assigned any of the remaining A - 1 colors, the vertex v; can be assigned any of the remaining A -2
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colors and finally the vertex vn can be assigned any of the A - n+1 colors. Thus, K, can be profperly
colored in A (A -1)( A -2) ... (A —n+1) different ways if A >n.
Lastly, consider the graph L, which is a path consisting of n vertices vy, v, v3....vy, shown

below:

Figure 2.44

This graph cannot be properly colored with one color, but can be properly colored with 2 colors
— by assigning one color to vy, v3, Vs........ and another color to vy, v4, Vs.... Suppose there are A > 2
number of colors available. Then, for a proper coloring of the graph, the vertex vy can be assigned any
one of the A colors and each of the remaining vertices can be assigned any one of A-1 colors.

(Bear in mind that alternative vertices can have the same color). Thus, the graph L, can be
properly colored in M(A-1)"" different ways.

The number of different ways of properly coloring a graph G with A number of colors is denoted
by P(G, A). Thus, from what is seen in the above three illustrate examples, we note that
) PNy, M) =1,
(i)  P(Ky,A)=0ifA<n,

P(K;, n)=11ifA=n, and

PKuy M) =AA-1)(A-2)...(A—n+l)ifA>n,

(iii) P(Ly, A) = A (A -1 ifA> 2,
We observe that in each of the above cases, P(G, L) is a polynominal. Motivated by these cases, we
take that P(G, A) is polynomial for all connected graph G. This polynomial is called the Chromatic
Polynomial.
It follows that if a graph G is made up of n parts, G1,G;....Gy, then P(G, 1) is given by the following
PRODUCT RULE:
P (G, ) =P (G, N). P (G, N).......... P (Gpn, )
In particular, If G is made up of two parts G; and G, then we have P(G, A) =P (G, A).
P (G2,) so that
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P (G2, A)=P(G,1) /P (G, 1)

DECOMPOSITION THEOREM:

Let G be a graph and e = {a,b} be an edge of G. Let G, = G — ¢ be that subgraph of G which is
obtained by deleting e from G without deleting vertices a and b*. Suppose we construct a new graph
G.’ by coalescing (identifying / merging) the vertices a and b in G.. Then G’ is subgraph of G, as well
as G.

The process of obtaining G, and G’ from G is illustrated in Figure 2.45.

dzb dI Ib |
a G c a G e c

@
(as0) G

Figure 2.45
The following theorem called the Decomposition theorem for chromatic polynomials given an

expression for P (G, A) in terms of P (Ge, A) and P (G, A) for a connected graph G.
Theorem 1:
If G is a connected graph and e = {a,b} is an edge of G, then

P (Ge, M) =P (G, 1) +P (G, 1)
Proof: In a proper coloring of G, the vertices a and b can have the same color or different colors. In
every proper coloring of G, the vertices a and b have different colors and in every proper coloring of G’
these vertices have the same color. Therefore, the number of proper colorings of G, is the sum of the
number of proper colorings of G and the number of proper colorings of G.’. Thatis, P (G, A) =P (G,
M +P (G, N
This completes the proof of the theorm.

MULTIPLICATION THEOREM
The following theorem gives an expression for P(G, A) for a special class of graphs.
Theorem 2: If a graph G has sub graphs G; and G; such that G;UG; = G and G;NG; = K,, for some
posistive intger n, then
P(G,A)=P (G, A).P(Gyn)/ 2™
Where A= A (A -1)( L -2) ... (A —n+1)
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Given A > n number of different colors, there are AM(n) =A (A -1) (A -1) (A -2) ........ (A —n+1) number of
proper colorings of K,. For each of these A(n) proper colorings of K,, the product rule yields P
(Gl,k)/k(“) ways of properly coloring the remaining vertices of G, Similarly, there are P (G, X)/X(") ways
of properly coloring the remaining vertices of G. As such
P(G, A) = P(Kp, 1) . P(G1, 1) / A™P(G,, 1) / 2™

=A™ . P (G, 1) /A" . P (G, 1)/ A™

=P (G, \) . P(Gy,2)/A™
This completes the proof of the theorem.
Example 1: Find the chromatic polynomial for the graph shown in Figure 2.46. What is its chromatic

number ?

We observe that the g@aph G is a path of length n = 5, namely Ls. Therefore, its chromatic

polynomial is Figure 2.46
P (G, 1) =AA-D)"! =a-1)*

Next, we note that the chromatic number of the graph is y(G)=2. (Because, thse graph cannot be
properly colored with one color but can be properly colored with 2 colors by assigning two colors to the
alternative vertices).

Example 2:

Find the chromatic number and the chromatic polynomial for the graph K
We note that K, is the complete bipartite graph wherein one bipartite of the vertex set has only one
vertex, say v, and the other bipartite has n vertices, say vi,va,.......... vn. A proper coloring of this graph
cannot be done with just one color and but can be done with two colors — by assigning one color to v and
another color to all of vi,va,......... Vn. Thus, the chromatic number of this graph is 2.

If A colors are available, then the vertex v can be colored in A ways and each of the vertices
VI, Vaeen... Vn can be colored in A-1 ways. Therefore, the number of ways of properly coloring the graph
is M(A-1)". This is the chromatic polynomial for the graph.

Example 3:
(a) consider the graph K,3 shown in Figure 2.47. Let A denote the number of colors available to
properly color the vertices of this graph. Find:

(1) how many proper colorings of the graph have vertices a, b colored the same.

(i1) how many proper colorings of the graph have vertices a,b colored with different colors.

Dept of CSE, S]BIT 62



Graph Theory and Combinatorics 10CS42

(ii1) The chromatic polynomial of the graph.
(b) For the graph K, , what is the chromatic polynomial?

X

Z

Figure 2.47

(a): (1) If the vertices a and b are to have the same color, then there are A choices for coloring the vertex
a and only one choice for the vertex b (or vice versa). Consequently, there are A1 choices for
each of the vertices x,y,z. Hence, the number of proper colorings (in this case) is A (A-1)*

(i1) If the vertices a and b are to have different colors, then there are A choices for coloring the
vertex a and A-1 choices for the vertex b (or vice versa). Consequently, there are A—2 choices for
each of the vertices x,y,z. Hence the number of proper colorings (in this case) is A (A-1) (A-2)°.

(111) Since the two cases of the vertices a and b have the same color or different colors are
exhaustive and mutually exclusive, the chromatic polynomial of the graph is
P(Ky3, A) =4 (A-1)* + A(A-1) (1-2)°.

(b): Let V; = {a,b} and V; = {X1,X2,X3,......... Xn; be the two bipartites of K,,. Then, if a and b are to
have the same color, the number of proper colorings of K, is A (A-1)" as in case (i) above, If a
and b are to have different colors, the number of proper colorings is A(A-1)(A-2)",

as in case (ii) above. Consequently, the chromatic polynomial for K ,, is
P(Kop, &) =A (A-1)"+ MA-1) (A-2)" .

Example 4: Find the chromatic polynomial for the cycle Cy4 of length 4.

vy A

v, V3

Figure 2.48
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A cycle of length 4, namely Cy, is shown in Figure 2.48. Let us redesignate it as G and denote
the edge {v,,v3} as e. Then the graph G, and G.’ would be as shown below..

Vig————————— V, 2 V2 (5V3)

- . ,
v, G, V3 A G,

Fig. 2.49

We note that the graph G is a path with 4 vertices. Therefore, P(Ge, 1) = A (A-1)° Also, the
graph G.’ is the graph Kj3. Therefore P(G.’, A) =A(A-1)(A-2)Accordingly, using the decomposition
theorem, we find that
P(C4, M) =P(G,A) = P(Ge, ) - P(G.’, 1)

=L (-1 -1 (A1) (A-2)
=24 +607 3.
This is the chromatic polynomial for the given cycle.
Example 5: Find the chromatic polynomial for the graph shown below. If 5 colors are available, in

how many ways can the vertices of this graph be properly colored?.

Vi1
5 \Y/]
Va Vs
Figure 2.50

Let us denote the given graph by G and the edge {v;,v2} by e. Then the graph G, and G.” would be as

shown in Figure 2.51.

Vg V2 Vs Vo=V,
A G, V3 v, G, Vs
Figure 2.51

Let us redesignate the graph G. as H and denote the edge {v,,vs} as f. Then the graph H¢ and Hy*

would appear as shown below:
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¢

Y
1 Vs(=V; Vo
Vs Va
V, , V3
v, H, Vs ‘ H's
Figure 2.52

Applying the decomposition theorem to the graphs G and H we note that
P(G, L) =P(G.,\) - P(Ge’, L)

=P(H,\) - P(G’, V)

= { P(Hg)) - P(H?, )} - P(Ge’, &) ~-emmmmememes (1)

We observe that both of the graphs Ge’ and H¢ are the graph K4 and the graph Hy is a
deconnected graph having N; ) - null graph of order 1 consisting of the single vertex v;) and K4 as
components. Accordingly,
P(Ge’, M) = P(H¢ L) = P(K4, L) = MA-1) (A-2) (A-3)

And  P(Hg, M) =P(Ny, A) . P(K4, 1)

= AL A1) (A-2) (A-3).

Consequently, expression (i) gives
P(G,A) = A A (A-1) (A-2) (A-3) - 2 M(A-1) (A-2) (A-3)

=L (A-1) (A-2) (A-3) (A-2)

=% (A1) (A-2)* (A-3).
This is the chromatic polynomial for the given graph.
For A =5, this polynomial gives
P(G, L) =5 x 4 x 3% x 2=360.
This means that if 5 colors are available, the vertices of the graph can be properly colored in 360
different ways.
Example 6: Use the multiplication theorem to find P(G, 1) for the graph shown in Figure (2.50).

The graph G in figure 2.50 can be regarded as the union of the graphs G; and G; shown in
figures 2.53 (a) and 2.53(b) .
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Vs v,
A
VSA V2 V4 V3 . V5 V2
(a):G, (b):G, Fig.2¢38n G,

Then GN Gz = {vsva2}Shown in Figure 2.53 (c).

WE note that G; is the same as K3,G, is the same as K4 and G1NG; is the same as K,. Hence,
using the multiplication theorem (Theorem 2), we get
P(G,1)=P (G, L) .P(Gy 1)/ 2?.

=P (K3, ). P (K4, 1)/ A2

=L (A-1) (A-2) . MA-1) (A-2) (A-3) / A (A-1)

=L (A-1) (A-2)* (A-3)

As the chromatic polynomial for the give G. (This result agrees with the result proved in example 5)

Example 7: Find the chromatic polynomial for the graph shown below:

Figure 2.54
Let us denote the given graph by G and the edge {v;,vs} as e. Then the graph G, and G.” would

be as shown below.

Vs G,
Figure 2.55
Let us redesignate G, as H and denote the edge {vs,v,} by f. Then the graphs Hyand Heare as

shown below.

Vi Va V4 Vo(=Vs)
Vs
A H, A v, H, A
Figure 2.56
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Now, we note that H¢” is the union of the cycles viv4v,v; and v,v3vav, each of which is the same
as K3, and that the intersection of these cycles is the edge {vi,v,} which is the same as K,. Therefore, by

the multiplication theorem, we have

P(H? V)=P(Ks, ).PKMAP (i)
Similarly,
P(GS V)=P(Ks ). P(Ks, /AP (i)

Next, we note that Hf is the union of the cycles v|v,vivsviand vsvsvavs and that the intersection of these
cycles is the edge {vi,v3}. The first of these cycles is Cq, the second cycle is K3 and the edge {va4,v3} is
K;. Therefore, by the multiplication theorem, we have
P(H,M)=P(C4,0).P(K3,0)/A? (iii)

Now, by using the decomposition theorem and the fact that H =G., we get.
P(G,N) =P (G, A) - P(G.’, L)

=P (H,2) - P(Ge’, )

=P (Hg A) - P(Hf, A) - P(Ge, A)

=1/A?{P(C4,1).P(K3,1)-2P(K3,1)P(K3,1)},

using (i) — (iii)

=P(K3, 1)/ A? { P(C4.)) - 2P(K3,0)}
Using the result of Example 4 and the expressions for P(K3,1) & A® this becomes
P(G,L) = MA-D)A-2)/AA- D) {AMA-1)-(A-1)(A-2) } -20(A-1)(A-2)}

=L (A-1) (A-2) { (A-1)* - 3(A-2)}
=% (A-1) (A-2) (A - 50+7).

Example 8: Let G = G(V,E) be a graph with a,b € V but {a,b} = e ¢ E. Let Ge" denote the graph
obtained by including e into G and Ge"" denote the graph obtained by coalescing (merging) the vertices
aand b. Prove that
P(G,\)="P (Ge", L) + P (Ge "))
Hence find the chromatic polynomial for the graph shown in figure 2.57.

Figure 2.57

Dept of CSE, SJBIT 67



Graph Theory and Combinatorics 10CS42

Let us redesignate Ge™ as H. Then, from the definitions of Ge" and Ge™~ we find that H. = G and
H.’ = Ge' " Now, applying the decomposition theorem to H, we get
P(He, A)=P(H, A) + P (H.’, A)
This is the same as
P(G, =P (G.", M)+ P (G. ™, 1)
Which is the required result.
For the graph G shown in figure 2.57 , if e = {V, V4}, the graphs Ge" and Ge"" are as shown below:

Vi v, Vi
Vy V3 V3
G.* V4:‘V2 G+
Figure 2.58

We note that Ge" is K4 and Ge'" is K5, Therefore,
P(Ge™ )= P (Ka, 1) = & (A1) (0-2) (1-3)
and P(Ge™, 1)=P (K, 1) =% (1) (1-2)

Accordingly, the chromatic polynomial for the given graph is
P(G, M)=P (Ge", ) + P (Ge " })
=LA (A1) (A-2) (A-3) + A (A-1) (A-2)
=% (A1) (A-2)°.
Example 9: Prove the following:
(a) for any graph G, the constant term in P(G, 1) is zero.
(b) For any graph G = G(V,E) with \E\ > 1, the sum of the coefficients in P(G, 1) is zero.
Solution:
Let P(G, A)= apta; A+ ap Ap+...+ a; A, Then
P(G,0)=ay & P(G,1)=apta;+ a,+...... + a,.
(a)For any graph G, P(G,0) represents the number of ways of properly coloring G with zero number of
colors. Since a graph cannot be colored with no color on hand, it follows that P(G,0) = 0: that is a0 =

0.
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(b) For any graph G, P(G,1) represents the number of ways of properly coloring G with 1 color. If G has
at least one edge, G cannot be properly colored with 1 color. This means that, for G = G((V,E) with
\E\ > 1, we have
P(G,1)= 0, that is, apta;+ ar+............ +a~=0.

Exercises

01. Determine the chromatic polynomials for the graphs shown below:.

(i) (ii) (i) (iv) v) (vi)
Figure 2.59
Ans 1. A (A-1)2(A-2) .
Ans 2. A (A-1)* (A-2)% .
Ans 3.4 (A-1) (A-2) (A2 - 2 A+2) .
Ans 4. A (A-1) (A-2)°
Ans 5. L (\-1) (A-2) (2 A-5).
Ans 6. L (A-1)* (A-2)2.

02.  If 4 colors are available, in how many different ways can the vertices of each graph in Figure
2.59 be properly colored?
Ans: (1) 72 (ii) 144 (iii) 240 (iv) 96 (v) 72 (vi) 144

03. For n>3,Let G, be the graph obtained by deleting one edge from K,,. Determine P(G,, A) and x(Gy).
04. If C, denotes a cycle of length n> 3, prove that P(C,, ) = (A-1),+(-1)n(A-1)
05. If C, denotes a cycle of length n > 4 , prove that P(Cn, ) + P(Cn-1, 1) = A(A-1)""

Dept of CSE, SJBIT 69



Graph Theory and Combinatorics 10CS42

UNIT 3
TREES

Graphs
* QGraph consists of two sets: set V of vertices and set E of edges.
+ Terminology: endpoints of the edge, loop edges, parallel edges, adjacent vertices, isolated vertex,
subgraph, bridge edge
» Directed graph (digraph) has each edge as an ordered pair of vertices
Special Graphs
« Simple graph is a graph without loop or parallel edges. A complete graph of n vertices K, is a
simple graph which has an edge between each pair of vertices. A complete bipartite graph of (n,
m) vertices K, is a simple graph consisting of vertices, vi, va, ..., v and wy, wa, ..., W, with
the following properties:
— There is an edge from each vertex v; to each vertex w;
— There is no edge from any vertex v; to any vertex v;
— There is no edge from any vertex w; to any vertex w;

The Concept of Degree
* The degree of a vertex deg(v) is a number of edges that have vertex v as an endpoint. Loop edge
gives vertex a degree of 2. In any graph the sum of degrees of all vertices equals twice the
number of edges. The total degree of a graph is even. In any graph there are even number of
vertices of odd degree
Paths and Circuits
* A walk in a graph is an alternating sequence of adjacent vertices and edges. A path is a walk that
does not contain a repeated edge. Simple path is a path that does not contain a repeated vertex. A
closed walk is a walk that starts and ends at the same vertex. A circuit is a closed walk that does
not contain a repeated edge. A simple circuit is a circuit which does not have a repeated vertex
except for the first and last

Connectedness
» Two vertices of a graph are connected when there is a walk between two of them. The graph is
called connected when any pair of its vertices is connected. If graph is connected, then any two
vertices can be connected by a simple path. If two vertices are part of a circuit and one edge is
removed from the circuit then there still exists a path between these two vertices. Graph H is
called a connected component of graph G when H is a subgraph of G, H is connected and H is
not a subgraph of any bigger connected graph. Any graph is a union of connected components
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Euler Circuit

Euler circuit is a circuit that contains every vertex and every edge of a graph. Every edge is
traversed exactly once. If a graph has Euler circuit then every vertex has even degree. If some
vertex of a graph has odd degree then the graph does not have an Euler circuit. If every vertex of
a graph has even degree and the graph is connected then the graph has an Euler circuit. A Euler
path is a path between two vertices that contains all vertices and traverces all edge exactly ones.
There is an Euler path between two vertices v and w iff vertices v and w have odd degrees and
all other vertices have even degrees

Hamiltonian Circuit

Trees

Hamiltonian circuit is a simple circuit that contains all vertices of the graph (and each exactly
once). Example: Traveling salesperson problem

Connected graph without circuits is called a tree. Graph is called a forest when it does not have
circuits. A vertex of degree 1 is called a terminal vertex or a leaf, the other vertices are called
internal nodes. Examples: Decision tree, Syntactic derivation tree.

Any tree with more than one vertex has at least one vertex of degree 1. Any tree with n vertices
has n — 1 edges. If a connected graph with n vertices has n — 1 edges, then it is a tree

Rooted Trees

Rooted tree is a tree in which one vertex is distinguished and called a root. Level of a vertex is
the number of edges between the vertex and the root. The height of a rooted tree is the maximum
level of any vertex. Children, siblings and parent vertices in a rooted tree. Ancestor, descendant
relationship between vertices

Binary Trees

Binary tree is a rooted tree where each internal vertex has at most two children: left and right.
Left and right subtrees.

Full binary tree: Representation of algebraic expressions

If T is a full binary tree with k internal vertices then T has a total of 2k + 1 vertices and k + 1 of
them are leaves. Any binary tree with t leaves and height h satisfies the following inequality: t <
oh

Spanning Trees

A subgraph T of a graph G is called a spanning tree when T is a tree and contains all vertices of
G. Every connected graph has a spanning tree. Any two spanning trees have the same number of
edges. A weighted graph is a graph in which each edge has an associated real number weight. A
minimal spanning tree (MST) is a spanning tree with the least total weight of its edges.

Trees: Definition & Applications
A tree is a connected graph with no cycles. A forest is a graph whose components are trees. An
example appears below. Trees come up in many contexts: tournament brackets, family trees,
organizational charts, and decision trees, being a few examples.
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Directed Trees
A directed tree is a digraph whose underlying graph is a tree and which has no loops and no pairs of
vertices joined in both directions. These last two conditions mean that if we interpret a directed tree
as a relation, it is irreflexive and asymmetric. Here is an example.

T

Theorem: A tree T(V,E) with finite vertex set and at least one edge has at least two leaves (a leaf is a
vertex with degree one). Proof: Fix a vertex a that is the endpoint of some edge. Move from a to the
adjacent vertex along the edge. If that vertex has no adjacent vertices then it has degree one, so stop.
If not, move along another edge to another vertex. Continue building a path in this fashion until you
reach a vertex with no adjacent vertices besides the one you just came from. This is sure to happen
because V is finite and you never use the same vertex twice in the path (since T is a tree). This
produces one leaf. Now return to a. If it is a leaf, then you are done. If not, move along a different
edge than the one at the first step above. Continue extending the path in that direction until you reach
a leaf (which is sure to happen by the argument above).

Trees: Leaves & Internal Vertices

In the following tree the red vertices are leaves. We now know every finite tree with an edge has a
least two leaves. The other vertices are internal vertices.

* Theorem: Given vertices a and b in a tree T(V,E), there is a unique simple path from a to b.
Proof: Trees are connected, so there is a simple path from a to b. The book gives a nice example
of using the contrapositive to prove the rest of the theorem.

*  Theorem: Given a graph G(V,E) such that every pair of vertices is joined by a unique simple
path, then G is a tree. This is the converse of Theorem 6.37. Proof: Since a simple path joins
every pair of points, the graph is connected. Now suppose G has a cycle abc...a. Then ba and
bc...a are distinct simple paths from b to a. This contradicts uniqueness of simple paths, so G
cannot possess such a cycle. This makes G a tree.
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Rooted Trees
Sometimes it is useful to distinguish one vertex of a tree and call it the root of the tree. For instance
we might, for whatever reasons, take the tree above and declare the red vertex to be its root. In that
case we often redraw the tree to let it all “hang down” from the root (or invert this picture so that it
all “grows up” from the root, which suits the metaphor better)

Rooted Directed Trees
It is sometimes useful to turn a rooted tree into a rooted directed tree T’ by directing every edge

away from the root.

T <

-
Rooted trees and their derived rooted directed trees have some useful terminology, much of which is
suggested by family trees. The level of a vertex is the length of the path from it to the root. The
height of the tree is the length of the longest path from a leaf to the root. If there is a directed edge in
T' from a to b, then a is the parent of b and b is a child of a. If there are directed edges in T’ from a to

b and c, then b and ¢ are siblings. If there is a directed path from a to b, then a is an ancestor of b and
b is a descendant of a.

Binary & m-ary Trees
We describe a directed tree as binary if no vertex has outdegree over 2. It is more common to call a
tree binary if no vertex has degree over 3. (In general a tree is m-ary if no vertex has degree over
m+1. Our book calls a directed tree m-ary if no vertex has outdegree over m.) The directed rooted
tree above is 4-ary (I think the word is quaternary) since it has a vertex with outdegree 4. In a rooted
binary tree (hanging down or growing up) one can describe each child vertex as the left child or right
child of its parent.

Trees: Edges in a Tree
Theorem: A tree on n vertices has n—1 edges. Proof: Let T be a tree with n vertices. Make it rooted.
Then every edge establishes a parent-child relationship between two vertices. Every child has
exactly one parent, and every vertex except the root is a child. Therefore there is exactly one edge
for each vertex but one. This means there are n—1 edges.
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Theorem: If G(V,E) is a connected graph with n vertices and n—1 edges is a tree.

Proof: Suppose G is as in the statement of the theorem, and suppose G has a cycle. Then we can
remove an edge from the cycle without disconnecting G (see the next slide for why). If this makes G
a tree, then stop. If not, there is still a cycle, so we can remove another edge without disconnecting
G. Continue the process until the remaining graph is a tree. It still has n vertices, so it has n—1 edges
by a prior theorem. This is a contradiction since G had n—1 vertices to start with. Therefore G has no
cycle and is thus a tree.

(Why can we remove an edge from a cycle without disconnecting the graph? Let a and b be vertices.
There is a simple path from a to b. If the path involves no edges in the cycle, then the path from a to
be is unchanged. If it involves edges in the cycle, let x and y be the first and last vertices in the cycle
that are part of the path from a to b. So there is a path from a to x and a path from y to b. Since x and
y are part of a cycle, there are at least simple two paths from x to y. If we remove an edge from the
cycle, at least one of the paths still remains. Thus there is still a simple path from a to b.)

Important Concepts, Formulas, and t heorems
1. Graph. A graph consists of a set of vertices and a set of edges with the property that each edge
has two (not necessarily different) vertices associated with it and called its endpoints.

2. Edge; Adjacent. We say an edge in a graph joins its endpoints, and we say two endpoints are
adjacent if they are joined by an edge.

3. Incident. When a vertex is an endpoint of an edge, we say the edge and the vertex are
incident.

4. Drawing of a Graph. To draw a graph, we draw a point in the plane for each vertex, and then
for each edge we draw a (possibly curved) line between the points that correspond to the endpoints
of the edge. Lines that correspond to edges may only touch the vertices that are their endpoints.

5. Simple Graph. A simple graph is one that has at most one edge joining each pair of distinct
vertices, and no edges joining a vertex to itself.

6. Length, Distance. The length of a path is the number of edges. The distance between two
vertices in a graph is the length of a shortest path between them.

7. Loop; Multiple Edges. An edge that joins a vertex to itself is called a loop and we say we have
multiple edges between vertices x and y if there is more than one edge joining x and y.
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8.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Notation for a Graph. We use the phrase “Let G = (V,E)” as a shorthand for “Let G
stand for a graph with vertex set V and edge set E.”

Notation for Edges. In a simple graph we use the notation {x,y} for an edge fromx to y.
In any graph, when we want to use a letter to denote an edge we use a Greek letter like 6
so that we can save e to stand for the number of edges of the graph.

Complete Graph on fl vertices. A complete graph on fl vertices is a graph with fl vertices
that has an edge between each two of the vertices. We use Ky to stand for a complete graph

on fl vertices.

Path. We call an alternating sequence of vertices and edges in a graph a path if it starts and ends
with a vertex, and each edge joins the vertex before it in the sequence to the vertex after it in
the sequence.

Simple Path. A path is called a simple path if it has no repeated vertices or edges.

Degree of a Vertex. The degree of a vertex in a graph is the number of times it is incident with
edges of the graph; that is, the degree of a vertex x is the number of edges from x to other vertices
plus twice the number of loops at vertex x.

Sum of Degrees of Vertices. The sum of the degrees of the vertices in a graph with a finite
number of edges is twice the number of edges.

Connected. A graph is called connected if there is a path between each two vertices of the
graph. We say two vertices are connected if there is a path between them, so a graph is
connected if each two of its vertices are connected. The relationship of being connected is an
equivalence relation on the vertices of a graph.

Connected Component. If C is a subset of the vertex set of a graph, we use E(C) to stand
for the set of all edges both of whose endpoints are in C. The graph consisting of an equivalence
class C of the connectivity relation together with the edges E(C) is called a connected
component of our original graph.

Closed Path. A path that starts and ends at the same vertex is called a closed path.

Cycle. A closed path with at least one edge is called a cycle if, except for the last vertex, all of
its vertices are different.
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19. Tree. A connected graph with no cycles is called a tree.

20. Important Properties of Trees.
(a) There is a unique path between each two vertices in a tree. (b) A
tree on V vertices has V— 1 edges.
(c) Every finite tree with at least two vertices has a vertex of degree one.

Rooted trees

A rooted tree consists of a tree with a selected vertex, called a root, in the tree.

d rb

1. Ancestor, t. In a rooted tree with root r, a vertex x is an ancestor of a vertex y,
and vertex y is a descendant of vertex x if x and y are different and x is on the unique path from
the root to y.

2. Parent, Child. In a rooted tree with root r, vertex x is a parent of vertex y and y is a child
of vertex x in if x is the unique vertex adjacent to y on the unique path fromr to y.

3. Leaf (External) Vertex. A vertex with no children in a rooted tree is called a leaf vertex or an
external vertex.

4. Internal Vertex. A vertex of a rooted tree that is not a leaf vertex is called an internal
vertex.

5. Binary Tree. We recursively describe a binary tree as

* an empty tree (a tree with no vertices), or

+ a structure T consisting of a root vertex, a binary tree called the left subtree of the root and
a binary tree called the right subtree of the root. If the left or right subtree is nonempty, its
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root node is joined by an edge to the root of T.

10CS42

6. Full Binary Tree. A binary tree is a full binary tree if each vertex has either two nonempty

children or two empty children.

7. Recursive Definition of a Rooted Tree. The recursive definition of a rooted tree states that it is
either a single vertex, called a root, or a graph consisting of a vertex called a root and a set of
disjoint rooted trees, each of which has its root attached by an edge to the original root.

Traversal Algorithms

A traversal algorithm is a procedure for systematically visiting every vertex of an ordered binary tree

* Tree traversals are defined recursively
* Three commonly used traversals are:
— preorder

— inorder

— postorder

PREORDER Traversal Algorithm

Let T be an ordered binary tree with root R
If T has only R then

R is the preorder traversal

Else

Let T1, T2 be the left and right subtrees at R
Visit R

Traverse T1 in preorder

Traverse T2 in preorder

INORDER Traversal Algorithm

Let T be an ordered binary tree with root R
If T has only R then

R is the inorder traversal

Else

Let T1, T2 be the left and right subtrees at R
Traverse T1 in inorder

Visit R

Traverse T2 in inorder

POSTORDER Traversal Algorithm

Let T be an ordered binary tree with root R
If T has only R then

R is the postorder traversal
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Else
Let T1, T2 be the left and right subtrees at R
Traverse T1 in postorder

Traverse T2 in postorder
Visit R

Perfectly balanced tree Height balanced tree
M-ary tree

_Root «— Parent of B and C

Inner
Vertexx «— Leaf « Child of A

B and C are siblings

Constructing an Optimal Huffman Code

An optimal Huffman code is a Huffman code in which the average length of the symbols is
minimum. In general an optimal Huffman code can be made as follows. First we list the
frequencies of all the codes and represent the symbols as vertices (which at the end will be
leaves of a tree). Then we replace the two smallest frequencies f1 and f2 with their sum f1 +

f2, and join the corresponding two symbols to a common vertex above them by two edges, one
labeled 0 and the other one labeled 1. Than common vertex plays the role of a new symbol with a
frequency equal to f1 +f2. Then we repeat the same operation with the resulting shorter list of

frequencies until the list is reduced to one element and the graph obtained becomes a tree.

Spanning Trees of a Graph
If G(V,E) is a graph and T(V,F) is a subgraph of G and is a tree, then T is a spanning tree of G. That
is, T is a tree that includes every vertex of G and has only edges to be found in G. Using the
procedure in the previous paragraph (remove edges from cycles until only a tree remains), we can
easily prove that every connected graph has a spanning tree.
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ea f

FIGURE : Spanning tree.

Every connected graph has a spanning tree which can be obtained by removing
edges until the resulting graph becomes acyclic. In prac- tice, however, removing
edges is not efficient because finding cycles is time consuming.

Next, we give two algorithms to find the spanning tree T of a loop- free

connected undirected graph G — (V,E). We assume that the vertices of
G are given in a certain order v],v2,...,vp. The resulting spanning tree will be
T— v, EY.

Breadth-First Search Algorithm
The idea is to start with vertex v asroot, add the vertices that are adjacent to

v1, then the ones that are adjacent to the latter and have not been visited yet, and

so on. This algorithm uses a queue (initially empty) to store vertices of the graph.
In consists of the following:

1. Add v1 to T, insert it in the queue and mark it as “visited”.

2. If the queue is empty, then we are done. Otherwise let v be the
vertex in the front of the queue.

3. For each vertex v' of G that has not been visited yet and is adjacent to v
. ) . . ) !
(there might be none) taken in order of increasing subscripts, add vertex v

and edge (V,V!) to T, insert v! in the queue and mark it as “visited”.
4. Delete v from the queue. 5. Go to tep22
A pseudocode version of the algorithm 1is as follows:

l:procedure bfs(V,E)

2:  S:=(vl) {ordered list of vertices of afix level }
3: V= {vl} {vlisthe root of the spanning tree }
4:  E:={} {noedges inthe spanning tree yet }
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5:  while true

6: begin

7 for each xin S, in order,

8: for eachyin V-V’

9: if (x,y) is an edge then
10: add edge (x,y) to E” and vertex yto V’
11: if no edges were added then
12: return T
13: S:=children of S
14: end
15:end bfs

Figure below shows the spanning tree obtained using the breadth-first search
algorithm on the graph with its vertices ordered lexicographi- cally: a, b,c,d, e, f,
g, h, 1.

FIGURE Breadth-First Search.

Depth-First Search Algorithm
The idea of this algo- rithm is to make a path as long as possible, and then
go back (back- track) to add branches also as long as possible.

This algorithm uses a stack (initially empty) to store vertices of the graph. In
consists of the following:

1. Add vq1 to T, insert it in the stack and mark it as “visited”.
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. If the stack is empty, then we are done. Otherwise let v be the vertex on

the top of the stack.

. If there is no vertex v' that is adjacent to v and has not been visited yet,

then delete v and go to step 2 (backtrack ). Oth- erwise, let v! be the first
non-visited vertex that is adjacent to v.

. Add vertex v' and edge (v, V!) to T, insert v! in the stack and mark it as

“visited”.

. Go to step 2.

An alternative recursive definition is as follows. We define recur- sively a

process P applied to a given vertex v in the following way:

. Add vertex v to T and mark it as “visited”.

_If there is no vertex v' that is adjacent to v and has not been visited yet,

. ! .. . .
then return. Otherwise, let v be the first non-visited vertex that is adjacent
to v.

3. Add the edge (v,v') to T.

. Apply P to v
. Go to step 2 (backtrack).

The Depth-First Search Algorithm consists of applying the process just defined to

vl.

A pseudocode version of the algorithm is as follows:

l:procedure dfs(V,E)

[—
<

11:

XL ERD

V’ = {vl} {vlisthe root of the spanning tree }
E’:={} {noedges inthe spanning tree yet }
w=vl
while true
begin
while there is an edge (w,v) that when added
to T'does not create acycle in T
begin
Choose first vsuch that (w,v)
does not create acycle in T
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12: add (w,v)to E’

13: addvto V’

14: W=V

15: end

16: if w=vl then

17: return T

18: w = parent of win T {backtrack }
19: end

20:end

Figure shows the spanning tree obtained using the breadth-first search algorithm
on the graph with its vertices ordered lexicographi- cally: a, b,c,d, e, f, g, h, 1.

FIGURE Depth-First Search.
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UNIT 4
Minimum spanning trees

Let G =(V,E) be a connected graph and let 1 : E — R be a function, called the length
function. For any subset F of E, the length 1(F) of F is, by definition:
1(F) := Y el@FI(e).

In this section we consider the problem of finding a spanning tree in G of minimum length.
There is an easy algorithm for finding a minimum-length spanning tree, essentially due toBoruvka .
There are a few variants. The first one we discuss is sometimes called the
Dijkstra-Prim method.

Choose a vertex vl B V arbitrarily. Determine edges el,e2 ... successively as follows.
Let Ul := {vl}. Suppose that, for some k > 0, edges el,...,ek have been chosen, spanning
a tree on the set Uk. Choose an edge ek+1 @ §(Uk) that has minimum length among all
edges in 6(Uk).1 Let Uk+1 := Uk B ek+1.

By the connectedness of G we know that we can continue choosing such an edge until Uk =V .
In that case the selected edges form a spanning tree T in G. This tree has
minimum length, which can be seen as follows.

Call a forest F greedy if there exists a minimum-length spanning tree T of G that
contains F.

Theorem: Let F be a greedy forest, let U be one of its components, and let e @ 6(U).
If e has minimum length among all edges in 6(U), then F B {e} is again a greedy forest.
Proof. Let T be a minimum-length spanning tree containing F. Let P be the unique path
in T between the end vertices of e. Then P contains at least one edge f that belongs to
0(U). So T :=(T\ {f}) @ {e} is a tree again. By assumption, I(e) < 1(f) and hence
I(T ) <I(T). Therefore, T is a minimum-length spanning tree. As F @ {e} @ T, it follows
that F @I {e} is greedy.

Corollary : The Dijkstra-Prim method yields a spanning tree of minimum length.
Proof. It follows inductively with Theorem above that at each stage of the algorithm we have a greedy
forest. Hence the final tree is greedy — equivalently, it has minimum length.
The Dijkstra-Prim method is an example of a so-called greedy algorithm. We construct
a spanning tree by throughout choosing an edge that seems the best at the moment. Finally
we get a minimum-length spanning tree. Once an edge has been chosen, we never have to
replace it by another edge (no ‘back-tracking’).There is a slightly different method of finding a
minimum-length spanning tree, Kruskal’smethod . It is again a greedy algorithm, and again iteratively
edges el,e2,... are chosen, but by some different rule
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Dijkstra's algorithm

Dijkstra's algorithm, conceived by Dutch computer scientist Edsger Dijkstra in 1956 and
published in 1959, is a graph search algorithm that solves the single-source shortest path problem for a

graph with nonnegative edge path costs, producing a shortest path tree. This algorithm is often used in

routing. An equivalent algorithm was developed by Edward F. Moore in 1957.

For a given source vertex (node) in the graph, the algorithm finds the path with lowest cost (i.e.
the shortest path) between that vertex and every other vertex. It can also be used for finding costs of
shortest paths from a single vertex to a single destination vertex by stopping the algorithm once the
shortest path to the destination vertex has been determined. For example, if the vertices of the graph
represent cities and edge path costs represent driving distances between pairs of cities connected by a
direct road, Dijkstra's algorithm can be used to find the shortest route between one city and all other
cities. As a result, the shortest path first is widely used in network routing protocols, most notably IS-IS
and OSPF (Open Shortest Path First).

Algorithm

Let the node at which we are starting be called the initial node. Let the distance of node Y be the
distance from the initial node to Y. Dijkstra's algorithm will assign some initial distance values and will
try to improve them step by step.

1. Assign to every node a distance value: set it to zero for our initial node and to infinity for all
other nodes.

Mark all nodes as unvisited. Set initial node as current.

3. For current node, consider all its unvisited neighbors and calculate their tentative distance (from
the initial node). For example, if current node (A) has distance of 6, and an edge connecting it
with another node (B) is 2, the distance to B through A will be 6+2=8. If this distance is less than
the previously recorded distance (infinity in the beginning, zero for the initial node), overwrite
the distance.

4. When we are done considering all neighbors of the current node, mark it as visited. A visited
node will not be checked ever again; its distance recorded now is final and minimal.

5. If all nodes have been visited, finish. Otherwise, set the unvisited node with the smallest distance
(from the initial node, considering all nodes in graph) as the next "current node" and continue
from step 3.

Description
Note: For ease of understanding, this discussion uses the terms intersection, road and map —
however, formally these terms are vertex, edge and graph, respectively.

Suppose you want to find the shortest path between two intersections on a city map, a starting
point and a destination. The order is conceptually simple: to start, mark the distance to every intersection
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on the map with infinity. This is done not to imply there is an infinite distance, but to note that that
intersection has not yet been visited. (Some variants of this method simply leave the intersection
unlabeled.) Now, at each iteration, select a current intersection. For the first iteration the current
intersection will be the starting point and the distance to it (the intersection's label) will be zero. For
subsequent iterations (after the first) the current intersection will be the closest unvisited intersection to
the starting point—this will be easy to find.

From the current intersection, update the distance to every unvisited intersection that is directly
connected to it. This is done by determining the sum of the distance between an unvisited intersection
and the value of the current intersection, and relabeling the unvisited intersection with this value if it is
less than its current value. In effect, the intersection is relabeled if the path to it through the current
intersection is shorter than the previously known paths. To facilitate shortest path identification, in
pencil, mark the road with an arrow pointing to the relabeled intersection if you label/relabel it, and
erase all others pointing to it. After you have updated the distances to each neighboring intersection,
mark the current intersection as visited and select the unvisited intersection with lowest distance (from

the starting point) -- or lowest label—as the current intersection. Nodes marked as visited are labeled
with the shortest path from the starting point to it and will not be revisited or returned to.

Continue this process of updating the neighboring intersections with the shortest distances, then
marking the current intersection as visited and moving onto the closest unvisited intersection until you
have marked the destination as visited. Once you have marked the destination as visited (as is the case
with any visited intersection) you have determined the shortest path to it, from the starting point, and can
trace your way back, following the arrows in reverse.

In the accompanying animated graphic, the starting and destination intersections are colored in
light pink and blue and labelled a and b respectively. The visited intersections are colored in red, and the
current intersection in a pale blue.

Of note is the fact that this algorithm makes no attempt to direct "exploration" towards the
destination as one might expect. Rather, the sole consideration in determining the next "current”
intersection is its distance from the starting point. In some sense, this algorithm "expands outward" from
the starting point, iteratively considering every node that is closer in terms of shortest path distance until
it reaches the destination. When understood in this way, it is clear how the algorithm necessarily finds
the shortest path, however it may also reveal one of the algorithm's weaknesses: its relative slowness in
some topologies.

Pseudocode

In the following algorithm, the code u := vertex in Q with smallest dist[], searches for the vertex u in the
vertex set O that has the least dist[«] value. That vertex is removed from the set Q and returned to the
user. dist_between(u, v) calculates the length between the two neighbor-nodes u and v. The variable alt
on line 15 is the length of the path from the root node to the neighbor node v if it were to go through u. If
this path is shorter than the current shortest path recorded for v, that current path is replaced with this alt
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path. The previous array is populated with a pointer to the "next-hop" node on the source graph to get
the shortest route to the source.

1 function Dijkstra(Graph, source):

2 for each vertex v in Graph: // Initializations

3 dist[v] := infinity ; /' Unknown distance function from source to v

4 previous[v] := undefined ; // Previous node in optimal path from source
5 end for;

6  dist[source] :=0 ; // Distance from source to source

7  Q :=the set of all nodes in Graph ;

// All nodes in the graph are unoptimized - thus are in Q

o)

while Q is not empty: // The main loop
9 u ;= vertex in Q with smallest dist[] ;

10 if dist[u] = infinity:

11 break ; // all remaining vertices are inaccessible from source
12 fi;

13 remove u from Q ;

14 for each neighbor v of u: // where v has not yet been removed from Q.
15 alt := dist[u] + dist_between(u, v) ;

16 if alt <dist[v]: // Relax (u,v,a)

17 dist[v] :=alt ;

18 previous[v] :=u;

19 fi ;

20 end for ;
21 end while ;
22 return dist[] ;

23 end Dijkstra.
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If we are only interested in a shortest path between vertices source and target, we can terminate the
search at line 13 if u = target. Now we can read the shortest path from source to target by iteration:

1 S :=empty sequence

2 u = target

3 while previous|u] is defined:

4  insert u at the beginning of S
5  u:=previous[u]

Now sequence S is the list of vertices constituting one of the shortest paths from target to source,
or the empty sequence if no path exists.

A more general problem would be to find all the shortest paths between source and target (there
might be several different ones of the same length). Then instead of storing only a single node in each
entry of previous[] we would store all nodes satisfying the relaxation condition. For example, if both r
and source connect to farget and both of them lie on different shortest paths through target (because the
edge cost is the same in both cases), then we would add both » and source to previous|target]. When the
algorithm completes, previous[] data structure will actually describe a graph that is a subset of the
original graph with some edges removed. Its key property will be that if the algorithm was run with
some starting node, then every path from that node to any other node in the new graph will be the
shortest path between those nodes in the original graph, and all paths of that length from the original
graph will be present in the new graph. Then to actually find all these short paths between two given
nodes we would use a path finding algorithm on the new graph, such as depth-first search.

Kruskal's algorithm

Kruskal's algorithm is an algorithm in graph theory that finds a minimum spanning tree for a
connected weighted graph. This means it finds a subset of the edges that forms a tree that includes every
vertex, where the total weight of all the edges in the tree is minimized. If the graph is not connected,
then it finds a minimum spanning forest (a minimum spanning tree for each connected component).
Kruskal's algorithm is an example of a greedy algorithm.
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Description
e create a forest F (a set of trees), where each vertex in the graph is a separate tree
e create a set S containing all the edges in the graph
o while S is nonempty and F is not yet spanning
o remove an edge with minimum weight from S
o 1if that edge connects two different trees, then add it to the forest, combining two trees
into a single tree
o otherwise discard that edge.
At the termination of the algorithm, the forest has only one component and forms a minimum spanning
tree of the graph.

Performance

Where E is the number of edges in the graph and V is the number of vertices, Kruskal's algorithm can be
shown to run in O(E log E) time, or equivalently, O(E log V) time, all with simple data structures. These
running times are equivalent because:

« Eisat most V* and logV” = 2logV is O(log V).
o Ifwe ignore isolated vertices, which will each be their own component of the minimum spanning
forest, V< E+1, so log V is O(log E).

We can achieve this bound as follows: first sort the edges by weight using a comparison sort in O(E log
E) time; this allows the step "remove an edge with minimum weight from S" to operate in constant time.
Next, we use a disjoint-set data structure (Union&Find) to keep track of which vertices are in which
components. We need to perform O(E) operations, two 'find' operations and possibly one union for each
edge. Even a simple disjoint-set data structure such as disjoint-set forests with union by rank can
perform O(E) operations in O(E log V) time. Thus the total time is O(E log E) = O(E log V).

Provided that the edges are either already sorted or can be sorted in linear time (for example with
counting sort or radix sort), the algorithm can use more sophisticated disjoint-set data structure to run in
O(E a(V)) time, where o is the extremely slowly-growing inverse of the single-valued Ackermann
function.

Pseudocode
1 function Kruskal(G = <N, A>: graph; length: A — R"): set of edges

2 Define an elementary cluster C(v) «— {v}.

3 Initialize a priority queue Q to contain all edges in G, using the weights as keys.
4 Define a forest T «— @  //T will ultimately contain the edges of the MST

5 //nis total number of vertices

6 while T has fewer than n-1 edges do
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7 /] edge u,v is the minimum weighted route from u to v

8  (u,v) <« Q.removeMin()

9  //prevent cycles in T. add u,v only if T does not already contain a path between u and v.
10 // the vertices has been added to the tree.

11 Let C(v) be the cluster containing v, and let C(u) be the cluster containing u.

13 if C(v) #C(u) then

14 Add edge (v,u) to T.

15 Merge C(v) and C(u) into one cluster, that is, union C(v) and C(u).

16 returntree T

Description

This is our original graph. The numbers near the arcs indicate their weight. None of the arcs are highlighted.

AD and CE are the shortest arcs, with length 5, and AD has been arbitrarily chosen, so it is highlighted.

CE is now the shortest arc that does not form a cycle, with length &, so itis highlighted as the second arc.
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The next arc, DF with length 6, is highlighted using much the same method.

The next-shortest arcs are AB and BE, both with length 7. AB is chosen arbitrarily, and is highlighted. The arc BD has been highlighted in red,
because there already exists a path (in green) between B and D, so it would form a cycle (ABD) if it were chosen.

The process continues to highlight the next-smallest arc, BE with length 7. Many more arcs are highlighted in red at fhis stage: BC because it
would form the loop BCE, DE because it would form the loop DEBA, and FE because it would form FEBAD.

Finally, the process finishes with the arc EG of length 9, and the minimum spanning tree is found.

Proof of correctness
The proof consists of two parts. First, it is proved that the algorithm produces a spanning tree. Second, it
is proved that the constructed spanning tree is of minimal weight.

Spanning tree

Let P be a connected, weighted graph and let Y be the subgraph of P produced by the algorithm. Y
cannot have a cycle, since the last edge added to that cycle would have been within one subtree and not
between two different trees. Y cannot be disconnected, since the first encountered edge that joins two
components of Y would have been added by the algorithm. Thus, Y is a spanning tree of P.
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Minimality
We show that the following proposition P is true by induction: If F is the set of edges chosen at any
stage of the algorithm, there is some minimum spanning tree that contains F.

e Clearly P is true at the beginning, when F is empty: any minimum spanning tree will do.

e Now assume P is true for some non-final edge set F and let T be a minimum spanning tree that
contains F. If the next chosen edge e is also in T, then P is true for F+e. Otherwise, T+e has a
cycle C and there is another edge f that is in C but not F. Then T-f+e is a tree, and its weight is
not more than the weight of T since otherwise the algorithm would choose f in preference to e.
So T-f+e is a minimum spanning tree containing F+e and again P holds.

e Therefore, by the principle of induction, P holds when F has become a spanning tree, which is
only possible if F is a minimum spanning tree itself.

Prim's algorithm

In computer science, Prim's algorithm is an algorithm that finds a minimum spanning tree for a
connected weighted undirected graph. This means it finds a subset of the edges that forms a
tree that includes every vertex, where the total weight of all the edges in the tree is minimized.
Prim's algorithm is an example of a greedy algorithm.

Description

Prim's algorithm has many applications, such as in maze generation.

The only spanning tree of the empty graph (with an empty vertex set) is again the empty graph. The
following description assumes that this special case is handled separately.

The algorithm continuously increases the size of a tree, one edge at a time, starting with a tree consisting
of a single vertex, until it spans all vertices.

o Input: A non-empty connected weighted graph with vertices V and edges E (the weights can be
negative).
e Initialize: Vyew = {x}, where x is an arbitrary node (starting point) from V, Ey, = {}
e Repeat until Ve, = V:
o Choose an edge (u, v) with minimal weight such that u is in V. and v is not (if there are
multiple edges with the same weight, any of them may be picked)
o Add Vv to Vyew, and (u, V) to Epew

e Output: Vyey and E ey, describe a minimal spanning tree
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Description

This is our original weighted graph. The numbers near the edges indicate their weight.

Vertex D has been arbitrarily chosen as a starting point. Vertices A, B, E and F are connected to D
through a single edge. A is the vertex nearest to D and will be chosen as the second vertex along with the
edge AD.

The next vertex chosen is the vertex nearest to either D or A. B is 9 away from D and 7 away from A, E is
15. and F is 6. F is the smallest distance away, so we highlight the vertex F and the arc DF.

The algorithm carries on as above. Vertex B, which is 7 away from A, is highlighted.

In this case, we can choose between €. E, and G. C is & away from B, E is 7 away from B, and G is 11
away from F. E is nearest, so we highlight the vertex E and the arc BE.

Here, the only vertices available are € and G. € is 5 away from E, and G is 9 away from E. € is chosen,
s0 it is highlighted along with the arc EC_
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Vertex @ is the only remaining vertex. It is 11 away from F, and 9 away from E. E is nearer, so we highlight
it and the arc EG.

Now all the vertices have been selected and the minimum spanning tree is shown in green. In this case, it
has weight 39.

U Edge(u,v) vViu
n {ABCDEFG)

(DA)=5V
D (0.B)=9 AB,CEF.G
D} (DE) =15 ABLC.EF.CY

(D.F)=86

(DB)=9
AD [BE=15 BCEF.G
Gl of=-6v |DCERGH

(AB)=7

(DB)=9
(D.E)=15

{ADF} (AB)=TV {BCEG)
(FE)=8
(F.G)=11

(B.C)=8
(BE)=7V
{AB.DF} (RE=9EKR e
e (DE) =15 e
(F.E)=8
(F.G) =11
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(B.C)=8

(D.B) = 9 cycle

(D.E) = 15 cycle
{AB.D.EF} (EC)=5V {C.G}

(E.G)=9

(F.E) =8 cycle

(F.G)=11

(B.C) =& cycle
(D.B) = 9 cycle
(D.E) =15 cycle
(EG)=9V
(F.E) =8 cycle
(F.G)=11
(B.C) =& cycle
(D.B) = 9 cycle
{A.B,C,D.E,F.G}| (D.E) =15 cycle ({}
(F.E)= 8 cycle
(F.G) =11 cycle

{AB.C.D.EF) {6}

Max-flow min-cut theorem
In optimization theory, the max-flow min-cut theorem states that in a flow network, the maximum

amount of flow passing from the source to the sink is equal to the minimum capacity which when
removed in a specific way from the network causes the situation that no flow can pass from the source to
the sink.

Definition
Let N = (V,E) be a network (directed graph) with s and t being the source and the sink of N respectively.

The capacity of an edge is a mapping c: E-R", denoted by cy, or c(u,v). It represents the
maximum amount of flow that can pass through an edge.
A flow is a mapping f: E-R”, denoted by f,, or f(u,v), subject to the following two constraints:

1. Juv < Cufor each (u: U) S E(capacity constraint)

2. fw= > fu
2. u: (u,w)eE w(wweE  for each UEV \ {5, t}(conservation of
flows).

The value of flow is defined by | f | = Zyavfsy, where s is the source of N. It represents the amount
of flow passing from the source to the sink.
The maximum flow problem is to maximize | f|, that is, to route as much flow as possible from s to the
t.

An s-t cut C = (S,T) is a partition of V such that sBIS and tAT. The cut-set of C is the set
{(u,v)BE | ulS, vAT}. Note that if the edges in the cut-set of C are removed, | f|=0.
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(S, Th= Y Cuw
The capacity of an s-t cut is defined by (wwv)es =T

The minimum cut problem is to minimize c(S,T), that is, to determine S and T such that the capacity of
the S-T cut is minimal.

Statement
The max-flow min-cut theorem states

The maximum value of an s-t flow is equal to the minimum capacity of an s-t cut.

oW

Example

A network with the value of flow equal to the capacity of an s-t cut
The figure above is a network having a value of flow of 7. The vertex in white and the vertices in grey
form the subsets S and T of an s-t cut, whose cut-set contains the dashed edges. Since the capacity of the
s-t cut is 7, which is equal to the value of flow, the max-flow min-cut theorem tells us that the value of
flow and the capacity of the s-t cut are both optimal in this network.

Application

Generalized max-flow min-cut theorem

In addition to edge capacity, consider there is capacity at each vertex, that is, a mapping c: V—R",
denoted by c(v), such that the flow f has to satisfy not only the capacity constraint and the conservation
of flows, but also the vertex capacity constraint

v < v

tEZlf ( )foreachv EV\{S!t}'

In other words, the amount of flow passing through a vertex cannot exceed its capacity. Define an s-t cut
to be the set of vertices and edges such that for any path from s to t, the path contains a member of the
cut. In this case, the capacity of the cut is the sum the capacity of each edge and vertex in it.

In this new definition, the generalized max-flow min-cut theorem states that the maximum value of an
s-t flow is equal to the minimum capacity of an s-t cut in the new sense.

Matching theory
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In the mathematical discipline of graph theory, a matching or independent edge set in a graph is a
set of edges without common yvertices. It may also be an entire graph consisting of edges
without common vertices.

Definition
Given a graph G = (V,E), a matching M in G is a set of pairwise non-adjacent edges; that is, no two
edges share a common vertex.

A vertex 1s matched (or saturated) if it is incident to an edge in the matching. Otherwise the vertex is
unmatched.

A maximal matching is a matching M of a graph G with the property that if any edge not in M is added
to M, it is no longer a matching, that is, M is maximal if it is not a proper subset of any other matching
in graph G. In other words, a matching M of a graph G is maximal if every edge in G has a non-empty
intersection with at least one edge in M. The following figure shows examples of maximal matchings
(red) in three graphs.

s 4T° €3

A maximum matching is a matching that contains the largest possible number of edges. There may be
many maximum matchings. The matching number v(G) of a graph G is the size of a maximum
matching. Note that every maximum matching is maximal, but not every maximal matching is a
maximum matching. The following figure shows examples of maximum matchings in three graphs.

S GT° 43

A perfect matching (a.k.a. 1-factor) is a matching which matches all vertices of the graph. That is,
every vertex of the graph is incident to exactly one edge of the matching. Figure (b) above is an example
of a perfect matching. Every perfect matching is maximum and hence maximal. In some literature, the
term complete matching is used. In the above figure, only part (b) shows a perfect matching. A perfect

matching is also a minimum-size edge cover. Thus, M (G) < f (G), that is, the size of a maximum
matching is no larger than the size of a minimum edge cover.

A near-perfect matching is one in which exactly one vertex is unmatched. This can only occur when
the graph has an odd number of vertices, and such a matching must be maximum. In the above figure,
part (c) shows a near-perfect matching. If, for every vertex in a graph, there is a near-perfect matching
that omits only that vertex, the graph is also called factor-critical.

Given a matching M,
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o an alternating path is a path in which the edges belong alternatively to the matching and not to
the matching.

e an augmenting path is an alternating path that starts from and ends on free (unmatched)
vertices.

One can prove that a matching is maximum if and only if it does not have any augmenting path.

Properties
In any graph without isolated vertices, the sum of the matching number and the edge covering number
equals the number of vertices.[1] If there is a perfect matching, then both the matching number and the

edge cover number are |V/|/2.

If A and B are two maximal matchings, then |A| < 2|B| and |B| < 2|A|. To see this, observe that each edge
in A \ B can be adjacent to at most two edges in B \ A because B is a matching. Since each edge in B\ A
1s adjacent to an edge in A \ B by maximality, we see that

A\ B| <2|B\ 4.
Further we get that

|4 =|AnB|+|AY B| <2Bn 4| +2/B% 4 =28
In particular, this shows that any maximal matching is a 2-approximation of a maximum matching and
also a 2-approximation of a minimum maximal matching. This inequality is tight: for example, if G is a
path with 3 edges and 4 nodes, the size of a minimum maximal matching is 1 and the size of a maximum
matching is 2.

Matching polynomials

Main article: Matching polynomial

A generating function of the number of k-edge matchings in a graph is called a matching polynomial.
Let G be a graph and my be the number of k-edge matchings. One matching polynomial of G is

E mka.

k=0
Another definition gives the matching polynomial as

>_(=1) myz” ",

k=0
where n is the number of vertices in the graph. Each type has its uses; for more information see the
article on matching polynomials.

Maximum matchings in bipartite graphs

Matching problems are often concerned with bipartite graphs. Finding a maximum bipartite matching
(often called a maximum cardinality bipartite matching) in a bipartite graph G = (V = (X,Y),E) is
perhaps the simplest problem. The augmenting path algorithm finds it by finding an augmenting path
from each € X'to Y and adding it to the matching if it exists. As each path can be found in O(E)
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time, the running time is O(VE). This solution is equivalent to adding a super source s with edges to all
vertices in X, and a super sink t with edges from all vertices in Y, and finding a maximal flow from s to
t. All edges with flow from X to Y then constitute a maximum matching. An improvement over this is

the Hopcroft-Karp algorithm, which runs in D( VVE )time. Another approach is based on the fast
matrix multiplication algorithm and gives O(V**"®) complexity, which is better in theory for sufficiently
dense graphs, but in practice the algorithm is slower.

In a weighted bipartite graph, each edge has an associated value. A maximum weighted bipartite
matching[2] is defined as a perfect matching where the sum of the values of the edges in the matching
have a maximal value. If the graph is not complete bipartite, missing edges are inserted with value zero.
Finding such a matching is known as the assignment problem. It can be solved by using a modified
shortest path search in the augmenting path algorithm. If the Bellman-Ford algorithm is used, the
running time becomes O(V2E), or the edge cost can be shifted with a potential to achieve O(VZlog(V) +
VE) running time with the Dijkstra algorithm and Fibonacci heap. The remarkable Hungarian algorithm
solves the assignment problem and it was one of the beginnings of combinatorial optimization
algorithms. The original approach of this algorithm need O(VE) running time, but it could be improved
to O(V*log(V) + VE) time with extensive use of priority queues.

Maximum matchings

There is a polynomial time algorithm to find a maximum matching or a maximum weight matching in a
graph that is not bipartite; it is due to Jack Edmonds, is called the paths, trees, and flowers method or
simply Edmonds's algorithm, and uses bidirected edges. A generalization of the same technique can also
be used to find maximum independent sets in claw-free graphs. Edmonds' algorithm has subsequently

been improved to run in time O( VVE }time, matching the time for bipartite maximum matching.
Another algorithm by Mucha and Sankowski[3], based on the fast matrix multiplication algorithm, gives
O(V**") complexity.

Maximal matchings

A maximal matching can be found with a simple greedy algorithm. A maximum matching is also a
maximal matching, and hence it is possible to find a largest maximal matching in polynomial time.
However, no polynomial-time algorithm is known for finding a minimum maximal matching, that is, a
maximal matching that contains the smallest possible number of edges. Note that a maximal matching
with k edges is an edge dominating set with k edges. Conversely, if we are given a minimum edge
dominating set with k edges, we can construct a maximal matching with k edges in polynomial time.
Therefore the problem of finding a minimum maximal matching is essentially equal to the problem of
finding a minimum edge dominating set. Both of these two optimisation problems are known to be NP-
hard; the decision versions of these problems are classical examples of NP-complete problems.[6] Both
problems can be approximated within factor 2 in polynomial time: simply find an arbitrary maximal
matching M.
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UNIT 5

Fundamental Principles of Counting
The Rules of Sum and Product

Our study of discrete and combinatorial mathematics beings with two basic principles of counting: the
rules of sum and product. The statements and initial applications of these rules appear quite simple. In
analyzing more complicated problems, one is often able to break down such problems into parts that can
be solved using these basic Principles. We want to develop the ability to “decompose” such problems
and piece together our partial solutions in order to arrive at the final answer. A good way to do this is to
analyze and solve many diverse enumeration problems, Taking note of the principles being used. This is
the approach we shall follow here.

Our first principle of counting can be stated as follows:

The Rule of Sum:

If a first task can be performed in m ways, while a second task can be performed in » ways, and the two
tasks cannot be performed simultaneously, then performing either task can be accomplished in any of m
+ n ways.

Note that when we say that a particular occurrence, such as a first task, can come about in m ways, these
m ways are assumed to be distinct, unless a statement is made to the contrary. This will be true
throughout the entire text.

Example 1.1

A College library has 40 textbooks on sociology and 50 textbooks dealing with anthropology. By the
rule of sum, a student at this college can select among 40 + 50 = 90 textbooks in order to learn more
about one or the other of these two subjects.

Example 1.2

The rule can be extended beyond two tasks as long as no pair of tasks can occur simultaneously. For
instance, a computer science instructor who has, say, seven different introductory books each on C++,
Java and Perl can recommend any one of these 21 books to a student who is interested in learning a first
programming language.

Example 1.3
The computer science instructor of Example 1.2 has two colleagues. One of three colleagues has three
textbooks on the analysis of algorithms, and the other has five such textbooks. If m denotes the
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maximum number of different books on this topic that this instructor can borrow from them, then 5 <n
<8, for here both colleagues may own copies of the same textbook(s).

Example 1.4
Suppose a university representative is to be chosen either from 200 teaching or 300 non-teaching
employees, and then there are 200 + 300 = 500 possible ways to choose this representative.

Extension of Sum Rule:
If tasks Ty, Ta,....... , Tm can be done in ny,ny,...... , iy ways respectively and no two of these tasks can
be performed at the same time, then the number of ways to do ene of these tasks isny + ny + .... + nm.

Example 1.5
If a student can chose a project either 20 from mathematics or 35 from computer science or 15 from
engineering, then the student can choose a project 20 + 35 + 15 = 70 ways.

The following example introduces our second principle of counting.

Example 1.6

In trying to reach a decision on plant expansion, an administrator assigns 12 of her employees to two
committees. Committee A consists of five members and is to investigate possible favorable results from
such an expansion. The other seven employees, committee B, will scrutinize possible unfavorable
repercussions. Should the administrator decide to speak to just one committee member before making
her decision, then by the rule of sum there are 12 employees she can call upon for input. However, to be
a bit more unbiased, she decides to speak with a member of committee B on Tuesday, before reaching a
decision. Using the following principle, we find that she can select two such employees to speak with in
5 X7 =35 ways.

The rule of Product:

If a procedure can be broken down into first and second stages, and if there are m possible outcomes for
the first stage and if, for each of these outcomes, there are n possible outcomes for the second stage, then
the total procedure can be carried out, in the designated order, in mn ways.

Example 1.7

The drama club of Central University is holding tryouts for a spring play. With six men and eight

women auditioning for the leading male and female roles, by the rule of product the director can cast his
leading couple in 6 X 8 = 48 ways.
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Example 1.8

Here various extensions of the rule are illustrated by considering the manufacture of license plates
consisting of two letters followed by four digits.

a) If no letter or digit can be repeated, there are 26 X 25 X 10 X9 X 8 X 7= 3,276,000  different
possible plates.

b) With repetitions of letters and digits allowed, 26 X 26 X 10 X 10 X 10 X 10 =
6,760,000 different license plates are possible.

c) If repetitions are allowed, as in part (b), how many of the plates have only vowels
(A, E, I, O, U) and even digits? (0 is an even integer)

Example 1.9

In order to store data, a computer’s main memory contains a large collection of circuits, each of which is
capable of storing a bit — that is, one of the binary digits 0 or 1. These storage circuits are arranged in
units called (memory) cells. To identify the cells in a computer’s main memory, each is assigned a
unique name called its address. For some computer’s, such as embedded microcontrollers (as found in
the ignition system for an automobile), an address is represented by an ordered list of eight bits,
collectively referred to as a byte. Using the rule of product, thereare2x2x2x2x2x2x2x2=2% =
256 such bytes. So we have 256 addresses that may be used for cells where certain information may be
stored.

A kitchen appliance, such as a microwave oven, incorporates an embedded microcontroller. These
“small computers” (such as the PICmicro microcontroller) contain thousands of memory cells and use
two-byte addresses to identify these cells in their main memory. Such addresses are made up of two
consecutive bytes, or 16 consecutive bits. Thus there are 256 X 256 = 28X 28 =210 = 65,536 available
address that could be used to identifying cells in main memory. Other computers use addressing systems
of four bytes. This 32-bit architecture is presently used in the Pentium processor, where there are as
many as 28 X 28 X 2% X 2% =232 = 4,294,967,296 addresses for use in identifying the cells in main
memory. When a programmer deals with the UltraSPARC or Itanium processors, he or she considers
memory cells with eight-byte addresses. Each of these addresses comprises 8 X 8 = 64 bits, and there are
264 = 18,446,744,073,709,551,616 possible addresses for this architecture. (Of course, not all of these
possibilities are actually used.)

Example 1.10

At times it is necessary to combine several different counting principles in the Solution of one problem.
Here we find that the rules of both sum and product are needed to attain the answer.
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At the AWL Corporation Mrs. Foster operates the Quick Snack Coffee Shop. The menu at her shop is
limited: six kinds of muffins, eight kinds of sandwiches, and five beverages (hot coffee, hot tea, cola,
and orange juice). Ms. Dodd, an editor at AWL, sends her assistant Carl to the shop to get her lunch —
either a muffin and a hot beverage or a sandwich and a cold beverage.

By the rule of product, there are 6 X 2 = 12 ways in which Carl can purchase a muffin and hot beverage.
A second application of this rule shows that there are 8 X 3 = 24 possibilities for a sandwich and cold
beverage. So by the rule of sum, there are 12 + 24 = 36 ways in which Carl can purchase Ms. Dodd’s
lunch.

Example 1.11

A tourist can travel from Hyderabad to Tirupati in four ways (by plane, train, bus or taxi). He can then
travel from Tirupati to Tirumala hills in five ways (by RTC bus, taxi, rope way, motorcycle or walk).
Then the tourist can travel from Hyderabad to Tirumala hills in 4 X 5 = 20 ways.

Extension of Product Rule: Suppose a procedure consists of performing tasks 7;, 7>, ..., T,, in order.
Suppose task Ti can be performed in ni ways after the tasks 7;, 7> , ..., Tijare performed, then the
number of ways the procedure can be executed in the designated order is nl , n2,n3,..., n,

Example 1.12

“Charmas” brand shirt available in 12 colors has a male and female version. It comes in four sizes for
each sex, comes in three makes of economy, standard and luxury. Then the numbers of different types of
shirts produced are 12 X 2 X 4 X 3 = 288.

Example 1.13

If there are 18 boys and 12 girls in a class, there are 18 + 12 = 30 ways of selecting 1 student (either a
boy or a girl) as class representative.

Example 1.14

Suppose E is the event of selecting a prime number less than 10 and F is the event of selecting an even
number less than 10. then E can happen in 4 ways. But, because 2 is an even prime, E and F can happen
inonly 4 +4—1=7 ways.

Example 1.15

A bookshelf holds 6 different English books, 8 different French books, and 10 different German books.
There are (i) (8) (9) (10) = 480 ways of selecting 3 books, 1 in each language; (if) 6 + 8 + 10 = 24 ways
of selecting 1 book in any one of languages.
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Example 1.16

The scenario is as in Example 1.15. An English book and a French book can be selected in (6) (8) = 48
ways; an English book and a German book, in (6) (10) = 60 ways; a French book and a German book, in
(8) (10) = 80 ways. Thus there are 48 + 60 + 80 = 188 ways of selecting 2 books in 2 languages.
Example 1.17

If each of the 8 questions in a multiple-choice examination has 3 answers (1 correct and 2 wrong), the
number of ways of answering all questions is 38 = 6561.

Example 1.18

There are P(6, 6) = 720 6-letter “words” that can be made from the letters of word NUMBER, and there
are P(6, 4) = 6!/2! = 360 4-letter “words”. An unordered selection of r out of the n elements of X is
called an r-combination of X. In other words, any subset of X with r elements is an r-combination of X.
The number of r-combinations or r-subsets of a set of n distinct objects is denoted by C (n, r) (“n
choose r”). For each r-subset of X there is unique complementary (n — r)-subset, whence the important
relation C (n, r) = C (n, n — r). To evaluate C (n, r), note that an r-permutation of an n-set X is
necessarily a permutation of some r-subset of X. Moreover distinct r-subsets generate distinct r-
permutations. Hence, by the sum rule,

P, r)=P(r,r) + P(r,r)+...+ P(r, 1)

The number of terms on the right is the number of r-subset of Xj i.e. C (n, r). Thus
P (n, r)-subset, whence the important relation C (n, r) = C (n, n —r).

Example 1.19

From a class consisting of 12 computer science majors, 10 mathematics majors, and 9 statistics majors, a
committee of 4 computer science majors, 4 mathematics majors, and 3 statistics majors is to be formed.
There are

12! 12.11.10.9

C(12,4)=—"=
4181 4.3.2.1

=11.5.9 =495

Ways of choosing 4 computer science majors, C(10, 4) = 210 ways of choosing 4 mathematics majors,
and C(9, 3)+ 84 ways of choosing 3 statistics majors. By the product rule, the number of ways of
forming a committee is thus (495)(210)(84) = 8,731,800.
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Example 1.20

Refer to Example 1.18 in how many ways can a committee consisting of 6 or 9 members be formed such
that all 3 majors are equally represented?

A committee of 6(with 2 from each group) can be formed in C(12,2).C(10,2).C(9,2) = 106,920 ways.
The number of ways of forming a committee of 9 (with 3 from each group) is C(12,3).C(10,3).C(9,3) =
2,217,600. Then, by the sum rule the number of ways of forming a committee is 106,920 + 2,217,600 =
2,324,520.

Example 1.21

There are 15 married couples in a party. Find the number of ways of choosing a woman and a man from
the party such that the two are (@) married to each other, (b) not married to each other.

(a) A woman can be chosen in 15 ways. Once a woman is chosen, her husband automatically chosen. So
the number of ways of choosing a married couple is 15.

(b) A woman can be chosen in 15 ways. Among the 15 men in the party, one is her husband. Out of the
14 other men, one can be chosen in 14 ways. The product rule the gives (15)(14) =210 ways.

Example 1.22

Find the number of (a) 2-digit even numbers, (b) 2-digit odd numbers, (¢) 2-digit odd numbers with
distinct digits, and (d) 2-digit even numbers with distinct digits.

Let E be the event of choosing a digit for the units’ position, and F' be the event choosing a digit for the
tens’ position.

(a) E can be done in 5 ways; F can be done in 9 ways. The number of ways of doing F does not depend
upon how E is done; hence, the sequence {E, F} can be done in (5)(9) = 45 ways.

(b) The argument is as in (a): there are 45 2-digit odd numbers.

(c¢) If F is done first, the number of ways of doing E depends upon how F was done; so we cannot apply
the product rule to the sequence {F, E}. But we can apply the product rule to the sequence {E, F}.
There are 5 choices for the units’ digit, and for each of these there are 8 choices for the tens’ digit. So
the sequence {E, F} can be done in 40 ways; i.e., there are 40 2-digit odd numbers with distinct digits.

(d) We distinguish two cases. If the units’ digit is 0-which can be accomplished in 1 way-the tens’ digit
can be chosen in 9 ways. If 2,4,6, or 8 is chosen as units’ digit, the tens’ digit can be chosen in 8 ways.
Thus the sum and product rules give a total of (1)(9)+(4)(8) =41 ways.
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Example 1.23
A computer password consists of a letter of the alphabet followed by 3 or 4 digits. Find

(a) the total number of passwords that can be created, and (b) the number of Passwords in which no digit
repeats.

(a) The number of 4-charcter passwords is (26)(10)(10)(10), and the number of 5-charcter passwords is
(26)(10)(10)(10)(10), by the product rule. So the total number of passwords is 26,000 + 260,000 =
286,000, by the sum rule.

(b) The number of 4-charcter passwords is (26)(10)(9)(8) = 18,720, the number of 5-charcter passwords
is (26)(10)(9)(8)(7) = 131,040, for a total of 149,760.

Example 1.24

How many among the first 100,000 positive integers contain exactly one 3, one 4, and one 5 in their
decimal representation?

It is clear that we may consider instead the 5-place numbers 00000 through 99999. The digit 3 can be in
any one of the 5 places. Subsequently the digit 4 can be in any one of the remaining places. Then the
digit 5 can be in one of 3 places. There are 2 places left, either of which may be filled by 7 digits. Thus
there are (5)(4)(3)(7)(7) = 2940 integers in the desired category.

Example 1.25
Find the number of 3-digit even numbers with no repeated digits.

By problem 1.21(d), the hundreds’ and units’ positions can be simultaneously filled in 41 ways. For
each of these ways, the tens’ position can be filled in 8 ways. Hence the desired number is (41)(8) =
328ways.

Example 1.26

A palindrome is a finite sequence of characters that reads the same forwards and backwards
[GNUDUNG]. Find the numbers of 7-digit and 8-digit palindromes, under the restriction that no digit
may appear more than twice.

By the mirror-symmetry of a palindrome (of length n), only the first L(n+1)/2d Positions need be
considered. In our case this number is 4 for both lengths. Since the first digit may not be 0, there are 9
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ways to fill the first position. There are then 10-1 = 9 ways to fill the second position; 10-2 = 8 ways for
the third; 10-3 = 7 ways for the fourth. Thus there are (9)(9)(8)(7) = 4536 palindromic numbers of either
length.

Example 1.27

In a binary palindrome the first digits is 1 and each succeeding digit may be 0 or 1. Count the binary
palindromes of length n.

See problem 1.25. Here we have L(n+1)/24 -1 = L(n-1)/27 free positions, so the desired number is
Example 1.28

Find the number of proper divisors of 441,000. (A proper divisor of positive integer n 1s any divisor
other than 1 and n)

Any integer can be uniquely expressed as product of powers of prime numbers; thus, 441,000 =
(2*)(3%)(5*)(7%). Any divisor, proper or improper, of given number must be of the form (23)(3b)(5°)(7d),
where 0<a<3, 0<b<2, 0<c<3, and 0<d<2. in this paradigm the exponent a can be chosen in 4 ways; b in 3
ways; ¢ in 4 ways; d in 3 ways. So, by the product rule, the total number of proper divisors will be
@3)4)(3)—2=142.

Example 1.29

In a binary sequence every element is 0 or 1. Let X be the set of all binary sequences of length n. A
switching function (Boolean function) of n variables is A function from X to the set Y = {0, 1}. Find the
number of distinct switching functions of n variables.

The cardinality of X is r = 2". So the number of switching functions is 2".

1.2 Permutations

Continuing to examine applications of rule of product, we turn now to counting linear arrangements of
objects. These arrangements are often called permutations when the objects are distinct. We shall
develop some systematic methods for dealing with linear arrangements, starting with a typical example.

Example 1.14

In class of 10 students, five are to be chosen and seated in a row for a picture. How many such linear
arrangements are possible?
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The key word here is arrangement, which designates the importance of order. If A, B, C, . . ., I, J denote
the 10 students, then BCEFI, CEFIB, and ABCFG are there such different arrangements, even though
the first two involve the same five students.

To answer this question, we consider the positions and possible numbers of students we can choose in
order to fill each position. The filling of position is a stage of our procedure.

10 X 9 X 8 X 7 X 6
1st 2nd 3rd 4th Sth
position position position position position

Each of the 10 students can occupy the 1st position in the row. Because repetitions are not possible here,
we can select only one of the nine remaining students to fill the 2nd position. Continuing in this way, we
find only six students to select from in order to fill the 5™ and final position. This yields a total of 30,240
possible arrangements of five students selected from the class of 10.

Exactly the same answer is obtained if the positions are filled from right to left namely, 6 X 7 X § X 9 X
10. if the 3™ position is filled first, the 1st position second, the 4th osition third, the 5t position fourth,
and the 2" position fifth then answer is 9 X 6 X 10 X 8 X 7, still the same value, 30,240.

Definition 1.1

As in Example 1.14, the product of certain consecutive positive integers often comes into play in
enumeration problems. Consequently, the following notation proves to be quite useful when we are
dealing with such counting problems. It will frequently allow us to express our answers in a more
convenient form.

For an integer  mfac@rial (denoted n!) is defined by

0!=1
n! = (n)(n-1)(n-2)....3)(2)(1), for n>1,

One finds that 1! =1, 2! =2, 3! =6, 4! =24, and 5! = 120, in addition, for each
n>0,@m+ DI=@+ 1) (@),

Before we proceed any further, let us try to get a somewhat better appreciation for how fast n! grows.
We can calculate that 10! = 3,628,800, and it just so happens that this is exactly the number of seconds
in six weeks, Consequently, 11! Exceeds the number of seconds in one year, 12! Exceeds the number in
12 years, and 13! Surpasses the number of seconds in century.
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If we make use of the factorial notation, the answer in Example 1.14 can be Expressed in the following
more compact form:

|
10><9><8><7><6:10><9><8><7><6><5><4><3><2><1 :&
Definition 1.2 S5x4x3x2x1 5!

Given a collection of n distinct objects. Any (linear) arrangement of these objects is called a permutation
of the collection.

Starting with the letters a, b, ¢, there are six ways to arrange, or permute, all of the letters: abc, acb, bac,
bca, cab, cba. If we are interested in arranging only two of the letters at a time, there are six such size — 2
permutations: ab, ba, ac, ca, bc, cb.

If there are n distinct objects and r is an integer, with 1 <r <n, then by the rule of product, the number
of permutations of size r for the n objects are

Pn,r)=n X (n-1) X (n-2) X...X (n-r+1)
1st 2nd 3rd rth
position position position position

B B B B y (n—r)(n—r-1)..(1)(2)(3)
=n)(n-1)(n-2)..(n—r+1) =D D2)3)

n!

- (n —.r)!

Forr 0, P (n, 0) =1=n!/(n- 0)!, so P (n, r) = n!/(n-r)! holds for all 0 <r <n. A special case of this result
is Example 1.14, where n = 10, r =5, and P (10, 5) = 30, 240. When permuting all of the n objects in the
collection, we have r = n and find that P (n, n) = n!/0!=n!.

Note, for example, that if n > 2, then P (n, 2) = n!/(n-2)! = n(n-1). When n>3 one finds that P(n,n-3) =
n!/[n-(n-3)]!=n!/3!=(n)(n-1)(n_2)...(5)(4).

The number of permutations of size r, where 0 <r < n, from a collection of n objects, is P (n, r) =n!/(n-
r)! (Remember that P (n, r) counts (linear) arrangements in which the objects cannot be repeated.)
However, if repetitions are allowed, then by the rule of product there are nr possible arrangements, with
r>0.
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Example 1.15

The number of words of three distinct letters formed from the letters of word “JNTU” is P (4, 3) = 4!/(4
- 3)!=24. If repetitions are allowed, the number of possible six — letter sequence is 46 = 4096.

Example 1.16

In how many ways can eight men and eight women be seated in a row if (a) any person may sit next to
any other (b) men and women must occupy alternate seats (c¢) generalize this result for n men and n
women.

Here eight men and eight women are 16 indistinguishable objects.
a) The number of permutations 16 chosen form 16 objects is P (16, 16) = 16!
=20922789890000.

b) Here men and women are distinct (different)

D MWwMWwMWMWMMWMWMMWM W
s BT lll [ kb B

o8]
NS
[NS)
—
—

Man sitting first: the number of ways is 8! 8!

D WMWMWMWMMWMWMW MW M
s kTl s

=
=
oY)
oY)
[\
)
—
—

Woman sitting first: 8! 8!
Thus the number of ways men and women occupy
Alternatively is 8! 8! + 8! 8! =2(8!)

¢) Any person may sit: (2n)!
Men and women sit alternatively: 2(n!)*

Example 1.17

A committee of eight is to be formed from 16 men and 10 women. In how many ways can the
committee be formed if (a) there are no restrictions (b) there must be 4 men and 4 women (c) there
should be an even number of women (d) more women than men (e) at least 6 men.

a) No distinction between men and women. Problem is to choose 8 out of a set of 26 persons. So
the number of ways 8 are chosen out of 26 is C(26, 8) =26!/ 89! (18!)=2.480721325 x 1017
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b) First stage choose 4 men out of 16 given by C(16, 4). Second stage choose 4 women out
of 10 in C(10, 4)ways. Using product rule, the number of ways in which the committee consisting of
4 men and women is C(16,4) C(10,4) = 1,820 x 210 = 382,200.

c) If 2i even number of women are chosen, then the remaining 8 -2/ members of the

committee should be men. By product rule, C(10, 2/)C(16, 8-2i). Then the total number of ways is

> (S )s%)

d) Since the strength of the committee is 8, there should be 5 or more women so that women outnumber
men. Using product rule, the number of ways is.

28: 10 16
i=5 i 8 - i
e) When the number of men is 6 or more we get by a similar argument, the number of ways as

20y )

The number of permutations of the letters in the word COMPUTER s 8!. If only five of the letters are
used, the number of permutations (of size 5) is P(8, 5) = 8!/(8-5)! = 8!/3! = 6720. If repetitions of letters
are allowed, the number of possible 12-letter sequences is 8'% = 6.872 x 10'°.

Example 1.18
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A B L L A B L1 L2 A B L2 L1
A L B L A L1 B L2 A L2 B L1
A L L B A L1 L2 B A L2 L1 B
B A L L B A L1 L2 B A L2 L1
B L A L B L1 A L2 B L2 A L1
B L L A B L1 L2 A B L2 L1 A
L A L L L1 A B L2 L2 A B L1
L A A B L1 A L2 B .2 A L1 B
L B L L L1 B A L2 L2 B A L1
L B A A L1 B L2 A L2 B L1 A
L L A B L1 L2 A B L2 L1 A B
L L B A L1 L2 B A .2 L1 B A
() (b)

Example 1.19

Unlike example 1.18, the number of (linear) arrangements of the four letters in BALL is 12, not 4! (=
24), the reason is that we do not have four distinct letters to arrange. To get the 12 arrangements, we can
list them as in table 1.1(a).

If the two L’s are distinguished as L, L,, then we can use our previous ideas on permutations of distinct
objects; with the four distinct symbols B, A, L, L,, we have 4!=24 permutations. These are listed in
Table 1.1(b). Table 1.1 reveals that for each arrangement in which the L’s are indistinguishable there
corresponds a pair of permutations with distinct L’s. Consequently,

2 X (Number of arrangements of the letters B, A, L, L)
= (Number of permutations of the symbols B, A, L1, L2),

And the answer to the original problem of finding all the arrangements of the four letters in BALL is
412 =12.

Example 1.20

Using the idea developed in Example 1.19, we now consider the arrangements of all nine letters in
DATABASES.

There are 3! = 6 arrangements with the A’s distinguished for each arrangements in which the A’s are not
distinguished. For example, DA; TA,; BA3 SES, DA TA3;BA,SES, DA,TABA3SES, DA,TA3BA;SES,
DAsTABA,SES, and DA;TA;BA;SES all correspond to DATABASES, when we remove the
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subscripts on A’s. In addition, to the arrangement DA;TA,BA3;SES there corresponds the pair of
permutations A; TA,BA;3S|ES, and DA TA;BA3S,ES;, when the S’s are distinguished. Consequently,

(21(3!) (Number of arrangements of the letters in DATABASES) =
(Number of permutations of the symbols D, A, T, A,, B, Az, Si, E, S,)
So the number of arrangements of the nine letters in DATABASES is 9!/(2!3!)
= 30,240.

Before stating a general principle for arrangements with repeated symbols, note that in our prior two
examples we solved a new type of problem by relating it to previous enumeration principles. This
practice is common in mathematics in general, and often occurs in the derivations of discrete and
combinational formulas.

If there are n objects with n; indistinguishable objects of an r th type, where n; + . . . + n, = n, then there
are (linearyHrrangements of the given n objects
nln,!..n!

Example 1.21

The MASSASAUGA is a brown and white venomous snake indigenous to North America. Arranging all
of the letters in MASSASAUGA. We find that there are

10!

25200
413111!

Possible arrangements. Among these are

7!
3y

— 840

In which all four A’s are together. To get this last result, we considered all arrangements of the seven
symbols AAAA (one symbol), S, S, S, M, U, G.

Example 1.22
Determine the number of (staircase) paths in the xy-plane from (2, 1) to (7, 4), Where each such path is

made up of individual steps going one unit to the right (R) or one unit upward (U). The blue lines in Fig.
1.1 show two of these Paths.
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URRRUURR
Figure 1.1

URRRUURR
(@)

Beneath each path in Fig. 1.1 we have listed the individual steps. For example, in part (a)
the list R, U, R, R, U, R, R, U indicates that starting at the point (2, 1), we first move one
unit to the right [to (3, 1)], then one unit upward [to (3, 2)], followed by two units to the
right [to (5, 2)], and so on, until we reach the point (7, 4). The path consists of five R’s
for moves to the right and three U’s for moves upward.

The path in part (b) of the figure is also made up of five R’s and three U’s. in general, the
overall trip from (2, 1) to (7, 4) requires 7 — 2 = 5 horizontal moves to the right and 4 — 1
= 3 vertical moves upward. Consequently, each path corresponds to a list of five R’s and
U’s, and the solution for the number of paths emerges as the number of arrangements of
the five R’s and three U’s, which is 8!/(5! 3!) = 56.
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Example 1.23

We now do something a bit more abstract and prove that if # and k are positive
integers with n = 2k, then n!/2k is an integer. Because our argument relies on
Counting, it is an example of a combinatorial proof.

Consider the n symbols xI, xI, x2,x2.............ccooenne... , Xk , xk. The number of
ways in which we can arrange all of these n =2k symbols is an integer that equals

71! 7!
211 21 2k

k  factors of 2!

(a) (b) (c) (d)

Figure 1.2
We shall try to relate this problem to previous ones we have already encountered.
Consider Figs. 1.2 (a) and (b). Starting at the top of the circle and moving clockwise, we
list the distinct linear arrangements ABEFCD and CDABEF, which correspond to the
same circular arrangements. In addition to these two, four other linear arrangements —
BEFCDA, DABEFC, EFCDAB, and FCDABE — are found to correspond to the same
circular arrangements as in (a) or (b). So inasmuch as each circular arrangement
corresponds to six linear arrangements,
We have 6 X (Number of circular arrangements of A, B, .. ., F) =

(Number of linear arrangements of A, B...... F)=6!.

Consequently, There are 6!/6 = 5! = 120 arrangements of A, B,....F around the circular
table.
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Example 1.25

Suppose now that the six people of Example 1.24 are three married couples and that A,
B, and C are the females. We want to arrange the six people around the table so that the
sexes alternate. (Once again, arrangements are considered identical if one can be obtained
from the other by rotation.)

Before we solve this problem, let us solve Example 1.24 by an alternative method, which
will assist us in solving our present problem. If we place A at the table as shown in Fig.
1.3(a), five locations (clockwise from A) remain to be filled. Using B, C,...,F to fill.

Figure 1.3
A A
5 1 M3 B
4 2 F3 F2
3 Mz
(a) (b)

These five positions is the problem of permuting B, C, . . ., F in a linear manner, and this
be done in 5! = 120 ways.

To solve the new problem of alternating the sexes, consider the method shown in Fig.
1.3(b). A (a female) is placed as before. The next position, clockwise from A, is marked
M1 (Male 1) and can be filled in three ways. Continuing clockwise from A, position F2
(Female 2) can be filled in two ways. Proceeding in this Manner, by the rule of product,
there are 3 x 2 x 2 x 1 x 1 = 12 ways in which these six people can be arranged with no
two men or women seated next to each other.
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1.3 Combinations: The Binomial Theorem

The standard Deck of playing Cards Consists of 52 cards comprising four suits: Clubs,
diamond, hearts, and spades. Each suit has 13 cards: ace, 2, 3,..., 9, 10, jack, queen, king.
If we are asked to draw three cards from a standard deck, in succession and without
replacement, then by the rule of product there are

52!

52x51x50=—= P(52,3)

49!
possibilities, one of which is AH (ace of hearts), 9C (nine clubs), KD (King of
diamonds). If instead we simply select three cards at one time from the deck so that the
order of selection of the cards is no longer AH-9C-KD, AH-KD-9C, 9C-AH-KD,9C-
KD-AH, KD-9C-AH, and KD-AH-9C all correspond to just one (unordered) selection.
Consequently, each selection, or combination, of three cards, with no reference to order,
corresponds to 3! Permutations of three cards. In equation form this translates into

(3!) x (Number of selection of size 3 from a deck of 52)
= Number of permutations of size 3 for the 52 cards

Consequently, three cards can be drawn, without replacement, from a standard deck in
521/(3! 49!) = 22,100 ways.

If we start with n distinct objects, each selection, or combination, of r of these objects,
with no reference to order, corresponds to r! Permutations of size r from the n objects.
Thus the number of combinations of size r from a collection of size n is

P(n,ry  n!

B e Tk

0<r<n

In addition to C (n, r) the symbol is (tl%quently used. Both C (n, r) and are

sometimes read “n choose r.” Note that for'aH n > 0, C (n, r) = C (n, n) = 1. Further, for
alln>1,C(n, 1)=C (n,n-1) =n. when 0 <n <r, then C (n, r)

A word to the wise! When dealing with any counting problem, we shouléEgl% eldselves
about the importance of order in the problem, when order is relevant, we thi K An terms of
permutations and arrangements and the rule of product. When order is not relevant,

combinations could play a key role in solving the problem.
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Example 1.26

A hostess is having a dinner party for some members of her charity committee. Because
of the size of her home, she can invite only 11 of the 20 committee members. Order is not

important, so she can invite “the lucky 11” in C (20, 11) = = 20'/ 191 =167, 960
ways. However, once the 11 arrive, how she arranges them aro n er rectangular
dinning table is an arrangement problem. Unfortunately, no of theory of

combinations and permutations can help our hostess deal with “the offended nine” who
were not invited.

Example 1.27

Lynn an Patti decide to buy a PowerBall ticket. To win the grand prize for PowerBall one
must match five numbers selected from 1 to 49 inclusive and then must also match the
powerball, an integer from 1 to 42 inclusive. Lynn selects the five numbers (between 1
and 49 inclusive). This she can do in ~ ways (since matching does not involve order).
Meanwhile Patti selects the powerball — here thete are possibilities. Consequently, by
the rule of product, Lynn and Patti can selettghg six numbers for their PowerBall ticket
42
n =80,089,128 ways.

510

Example 1.28

1

a) A student taking a history examination is directed to answer any seven of 10 essay
questions. There is no concern about order here, so the student can answer the
examination in

10} 100 10x9x8
—=——=12ways
7 7131 3x2x] i
b) If the student must answer three questions from the first five and four questions
from the las , three questions can be selected from the first five in =10
ways, and the r questions can be selected in = 5 ways. Hence, by the
rule of product th stu ent can complete the examination in =10X5=
50 ways. s
¢) Finally, should the [directions on this examination indicate that the student must
answer seven of the 10 questions where gt }t three are selected from the first
five, then there are three cases to consider:

Dept of ISE, S|BIT 117



Graph theory and Combinatorics 10CS42

1) The student answers three of the first five questions and four of five: by the
rule of product this can happen in =10 X 5(=X5@ wayk, as in part
(b). 34

i) Four of the first five questions and three of the last five questions are

selected by the student: this can come about in =5 530 ways
— again by the rule of product. 4\ 3

111)  The student decides to answer all five of the first five questions and two
of the last five: The rule of product tells us that last case can occur in
=1X10=10 ways.

G GGG

Combining the results for cases (i), (ii), and (iii), by the rule of sum we find that the
student can make =50+ 50 + 10 = 110 selections of seven
(out of 10) questions where each selection includes at least three of the first five

NN HER SRR

a) At Rydell High School, the gym teacher must select nine girls from the junior and
senior classes for a volleyball team. If there are 28 juniors and 25 seniors, she can
make the selection in =4,431,613,550 ways.

53
b) If two juniors and one senior are the best spikers and must be on thit% , then
the rest of the team can be chosen in = 15,890,700 ways. 50\ (25
(\ le[: se)iors.

c¢) For a certain tournament that team must comprise four juniors a (?
The teacher can select the four juniors in ways. For each of these selections she has
ways to choose the five seniors. Consequently, by the rule of product, she can select her
team in = 1,087,836,750 ways for this particular tournament.
2825
We
Some problems can be treated from the viewpoint of either arrangements or

combinations, depending on how one analyzes the situation. The following Example
demonstrates this.
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Example 1.30

The gym teacher of Example 1.29 must make up four volleyball teams of nine girls each
from the 36 freshman girls in her P.E. class. In how many ways can she select these four
terms? Call the teams A, B, C, and D.

a) To form team A, she can select any nine girls from the 36 enrolled in ways.
For team B the selection process yields ~ possibilities. This leaves ~ and
possible ways to select teams C and D, respectively. So by the rule of product, the
four teams can be chosen in

36\ 27\ 18Y\ 9 | ' ! ! |
_ 36! 270\ 18\ 9 _ 36! _ 2.145X1019WWS
909 N9 )9 97T A 9N A 9191 A 910! ) 91919191

b) For an alternative solution, consider the 36 students lined up as follows:

Lst 2nd 3rd 35th 36th

student student student  student student

To select the four teams, we must distribute nine A’s, nine B’s, nine C’s and nine D’s in
the 36 spaces. The number of ways in which this can be done is the number of
arrangements of 36 letters comprising nine each of A, B, C, and D. This is now the
familiar problem of arrangements of nondistinct objects, and the answer is

36!
—————————————— - a
91919191

Our next example points out how some problems require the concepts of both

sin part(a)

arrangements and combinations for their solutions.

Example 1.31
The number of arrangements of the letters in TALLAHASSEE is

11!
———— = 831,600.
312121211111

How many of these arrangémeéiits have no adjacent A’s?
When we disregard the A’s, there are

8

——__=5040
20202111
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Ways to arrange the remaining letters. One of these 5040 ways is shown in the following
figure, where the arrows indicate nine possible locations for the three A’s.

PERERS T pLpLAS i g
Three of these locations can be selected in =(3®ways, and because this is also
possible for all the other 5039 arrangements of E, R, 8§, I, L, L, S, H, by the rule of
product there are 5040 X 84 = 423,360 arrangements of the letters in TALLAHASSEE
with no consecutive A’s.

Before proceeding we need to introduce a concise way of writing the sum of list of n + 1
terms like a,,, 8+, am+2, - - ., am+n, Where m and n are integers and » > 0. This notation is
called the Sigma Notation because it involves the capital Greek letter X; we use it to

represent a summation by writing
m+n

Ay + Ay + Ay + ot 4, = D4
i=m

Here, the letter i is called the index of the summation, and this index accounts for all
integers starting with the lower limit m and Continuing on up to (and including) the upper
limit m + n.

We may use this following notation

7 7
I)Zai =a,+ta,‘tas+as+ag+a, = Zaj for there is
i=3 j=3
nothing special about the letter i.

4 4
Z)Z:i2 =1 +2°+3*+4°=30= Z:kz,becamseO2 =0.
i=1

k=0
100 101 99
3)Y =10 +12° +13°+..+100° = > (1) = D (k+1)
i=11 j=12 k=10

4)% 2i = 2(7) +2(8) +2(9) + 2(10) = 68 = 2(34)

i=7
3 4 2
S)Z a =a; = Zai—l = zam
i3 i—4 i=2

5
6)Za:a+a+a+a+a=5a
i=1
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Furthermore, using this summation notation, we see that one can express the answer to
part (c¢) of Example 1.28 as

SYSY (SYS) (SYS) &(S5) S 2005 |5

34+43+52:Z° 7—1':2

i=3 \ ! j=2 T=j\J
We shall find use for this new notation in the following example and in many other
places throughout the remainder of this book

Example 1.32

In the studies of algebraic coding theory and the theory of computer languages, we
consider certain arrangements, called strings, made up from a prescribed alphabet of
symbols. If the prescribed alphabet consists of the symbols 0, 1, and 2, for example, then
01, 11, 21, 12, and 20 are five of the nine strings of length 2. Among the 27 strings of
length 3 are 000,012, 202, and 110.

In general, if n is any positive integer, then by the rule of product there are 3" strings of
length n for the alphabet 0,1, and 2. If x = x;x,x3. . . x, is one of these strings, we define
the weight of x, denoted wt(x), by wt(x) = x; +x2+ x3 +.. .+ x,. For example, wt(12) =3
and wt(22) = 4 for the case where n = 2; wt(101) = 2, wt(210) = 3, and wt(222) = 6 for
n=3.

Among the 3'° strings of length 10, we wish to determine how many have even weight.
Such a string has even weight precisely when the number of 1's in the string is even.

There are six different cases to consider. If the string x contains no 1's, then each of the
10 locations in x can be filled with either 0 or 2, and by the rule of product there are 210
such strings. When the string contains two 1's, the locations for these two 1's can be

selected in ways. Once these two locations have been specified, there are 2° ways to
place either (16)2 in the other eight positions. Hence there are 2% strings of even
weight that comt

in two 1's. The numbers of strings for the other four cases ar % ven in
1
Tablel.2. E ]]

2

Consequently, by the rule of sum, the number of strings of length
10 that have even weight is
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Number of 1's Number of Strings Number of 1's Number of Strings

10
A 10 50 g 72
4 8

6 10 10 10
6 10

Table 1.2

Often we must be careful of overcounting—a situation that seems to arise in what may
appear to be rather easy enumeration problems. The next example demonstrates how
overcounting may come about.

Example 1.33

a) Suppose that Ellen draws five cards from a standard deck of 52 cards. In how
many ways can her selection result in a hand with no clubs? Here we are
interested in counting all five-card selections such as

1)  Ace of hearts, three of spades, four of spades, six of diamonds, and the jack of
diamonds.
i1)  Five of spades, seven of spades, ten of spades, seven of diamonds, and me king of
diamonds.
i) Two of diamonds, three of diamonds, six of diamonds, ten of diamonds, and the
jack of diamonds.

If we examine this more closely we see that Ellen is restricted to selecting her five
cards from the 39 cards in me deck that are not clubs. Consequently, she can make
her selection in ways. (39j

5
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b) Now suppose we want to count the number of Ellen's five-card selections that
contain at least one club. These are precisely the selections that were not counted in
part (a). And since there are possible five-card hands in totfﬁﬂe find that

52\ (39 5
o || 5 2.598,960 - 575,757 = 2,023,203

of all five-card hands contain at least one club.

c¢) Can we obtain the result in part (b) in another way? For example, since Ellen wants
to have at least one club in the five-card hand, let her first select a club. This she can
doin  ways. And now she doesn't care what comes up for the other four cards. So
after she eliminates the one club cho enejrom her standard deck, she can then select
the other four cards in ways. T dr fore, by the rule of product, we count the
number of selections here as

(?J (le =13 X 249,900 = 3,248,700

Something here is defidltely wrong! This answer is larger than that in part (b) by
more than one million Hanpds. Did we make a mistake in part (b)? Or is something
wrong with our present reasoning?

For example, suppose that Ellen first selects
the three of clubs
and then selects
the five of clubs,
king of clubs,
seven of hearts, and
jack of spades.

If, however, she first selects
the five of clubs
and then selects
the three of clubs,
king of clubs,
seven of hearts, and
jack of spades,
is her selection here really different from the prior selection we mentioned?
Unfortunately, no! And the case where she first
selects.
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the king of clubs
and then follows this by selecting
the three of clubs,
five of clubs,
seven of hearts, and
jack of spades
is not different from the other two selections mentioned earlier.
Consequently, this approach is wrong because we are overcounting — by considering
like selections as if they were distinct.

d) But is there any other way to arrive at the answer in part (b)? Yes! Since the five-
card hands must each contain at least one club, there are five cases to consider. These
are given in Table 1.3. From the results in Table 1.3 we see, for example, that there
are five-card hands that contain exactly two clubs. If we are interested in
having exactly three clubs in the hand, then the results in the table indicate that there

are such hands.
13Y 39
205

Since no two of the cases in Table 1.3 have any five-card hand in common, the

number of hanEé-’t 8 %jlen can select with at least one club is
302

GBI

= (13)(82,251) + (78)(9139) + (286)(741) + (715)(39) + (1287)(1)

=2,023,203
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Table 1.3
Number of Ways to Number of Ways to
Number of clubs Select This Number I;}lll::l:rre I\(I)(ft C(llalr)(sis Select This Number
of Clubs u of Non clubs
1 13 4 39
1 4
2 13 3 39
2 3
3 13 2 39
3 2
13 3
4 1 9
4 1
13 39
5 5 0 0

We shall close this section with three results related to the concept of combinations.

First we note that for integers n, r, with n > r >0, . This can be established

algebraically from the formula for , but we prefer to observe that when dealing
with a selection of size r from a collection of n distinct objects, the selection process
leaves behind » — r objects. Consequently, affirms the existence of a
correspondence between the selections of size r (objects chosen) and the selections of
size n - r (objects left behind). An example of this correspondence is shown in Table
1.4, where n = 5, r = 2, and the distinct objects are 1, 2, 3, 4, and 5.
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This type of correspondence will be more formally defined in Chapter 5 and used in
other counting situations.
Our second result is a theorem from our past experience in algebra.

Theorem 1.1
The Binomial Theorem. If x and y are variables and n is a positive integer, then

no [T o 0 [0 ([P 2
X+ = X + X + X +...
(x+) o [ Ty
n n—1_.1 n n_ 0 ‘ n k _ n—k
- x + X" =D x
n—1 d n d o\ k d

Before considering the general proof, we examine a special case. If n = 4, the
coefficient of x2y2 in the expansion of the product

(x+y) (x+y) (xty) (xty)
1st 2nd 3rd 4th
factor factor factor factor

is the number of ways in which we can select two x's from the four x's, one of which
is available in each factor. (Although the x's are the same in appearance, we
distinguish them as the x in the first factor, the x in the second factor, ... , and the x in
the fourth factor.

Also, we note that when we select two x's, we use two factors, leaving us with two
other factors from which we can select the two y's that are needed.) For example,
among the possibilities, we can select (1) x from the first two factors and y from the
last two or (2) X from the first and third factors and y from the second and fourth.
Table 1.5 summarizes the six possible selections.

Consequently, the coefficient of x’y” in the expansion of (x + y) * is =C[64}3\e
number of ways to select two distinct objects from a collection of four istirct
objects.
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Table 1.4
Selections of Size r = 2 (Objects| Selections of Sizen-r=3
Chosen) (Objects Left Behind)
1. 1,2 6. 2,4 1. 3,45 6. 1,3,5
2. 1,3 7. 25 2. 245 7. 1,3,4
3. 14 8. 3,4 3. 23,5 8. 1,2,5
4. 1,5 9. 35 4. 234 9. 1,24
5.23 10. 4,5 5. 1,45 10. 1,2,3
Table 1.5

Factors Selected for x Factors Selected for y
1. 1,2 1. 3,4
2. 1,3 2. 24
3. 14 3. 23
4. 23 4. 14
5. 24 5. 1,3
6. 2,5 6. 1,2

Now we turn to the proof of the general case.
Proof: In the expansion of the product
(xty) (xty) xty) ... (xty)
1st 2nd 3rd 4th
Factor Factor Factor Factor

The coefficient of x*y™*, where 0 < k < n, is the number of different ways in which
we can select k x’s [and consequently (n - k) y’s] from the n available factors. (One
way, for example, is to choose x from the first k factors and y from the last n — k
factors) The total number of such selections of size k form a collection of size n is C

(n, k)= | " Jand from this the binomial theorem follows.
k

Example 1.34

In view of this theorem, is often referred to as a binomial coefficient. Notice that it is
also possible to express the result of Theorem 1.1 as
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a) From the binomial theorem it follows that the coefficient of x5y2 in the expansion

of x+y)is(7]= (7321
5 2

b) To obtain the coefficient of @’b” in the expansion of (2a - 3b)’, replace 2a by x and
3b by y. From the binomial theorem the coefficient of x’y” in (x +y) is and

sy = 2a)’ 3b2—7 2)°(-3)?a’b? = 6048a°b?
Sxy—s(a)(—)—s()(—)a = a’b”.

Corollary 1.1

For each integer n > 0,

N
o
+
_|_
+
A
[
N

o
S
2.

n n n n
b |- |+ |-+ (1) |=0.
0) (1) \2 n

N’

Proof: Part (a) follows from the binomial theorem when we set x =y = 1. When x = -
1 and y = 1, part (b) results.

Our third and final result generalizes the binomial theorem and is called the
multinomial theorem.

Theorem 1.2
For positive integers n, ¢, the coefficient of _x1n1 x;z x;3 n .tketnéxpansion of

X7+ )" s
!

n'n,'n!..n!

Where each n; is an integer with 0 <mn; <n, forall 1 <i<t, and
nytn,+n;+...+n,=n.

m .o 03
xl X2 .X3
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Proof: As in the proof of the binomial theorem, the coefficient of

is the number of ways we can select x; from n; of the n factors, x; from n; of the

n — n; remaining factors, x; from n; of the n — n; — n; now remaining factors, ...., and
x; from nt of the last w —n; —n, —n3 —...— n.; = n, remaining factors. This can be
carried out, as in part (a) of Example 1.30, in

n\n-n\n-n-ny,\ (n—n—n,—n,—.—n,_,

n, n, n, n,

ways. We leave to the reader the details of showing that this product is equal
to n!

b
n'n,!n,!..n!

which is also written as

n,n,,ns,...,N,
and is called a multinomial coefficient. (When t = 2 this reduces to a binomial
coefficient)

Example 1.35

a) In the expansion of (x + y + z)” it follows from the multinomial theorem that the
coefficient of x’y°¢’ is = =210, while the coefficient of xpz’ is =42

and that X’z is = =35. i( 7 J ( 7! l ( 7 j
b) Suppose we need to know the coefficient ofl @2b3c2d5 ig'ad! xpansion of (@ +2b \1,1,5
—3c+2d + 5)16. If we replace %by 2b jy w, - 3¢ by(x, 2d ?yy and's y z, then we

orem to

9~y & 0ty

can apply the multinomial Th v+ w + x (B94 2" ai4Yetermine the

coefficient of v* w3x2y5z4 as 2,702,400. But

[293,126,5,4j(“)2 (2b) (=3c)" (24 ) (5)°
= 435,891,486,000,000a°b’c*d’
) (1) (=3P ) (5) (a?p'c*a)

2,3,2,5,4
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1.4 Combinations with Repetition

When repetitions are allowed, we have seen that for n distinct objects an arrangement
of size r of these objects can be obtained in n” ways, for an integer r > 0. We now turn
to the comparable problem for combinations and once again obtain a related problem
whose solution follows from our previous enumeration principles.

Example 1.36

On their way home from track practice, seven high school freshmen stop at a
restaurant, where each of them has one of the following: a cheeseburger, a hot dog, a
taco, or a fish sandwich. How many different purchases are possible (from the
viewpoint of the restaurant)?

Let ¢, h, t, and f represent cheeseburger, hot dog, taco, and fish sandwich,
respectively. Here we are concerned with how many of each item are purchased, not
with the order in which they are purchased, so the problem is one of selections, or
combinations, with repetition.

In Table 1.6 we list some possible purchases in column (a) and another means of
representing each purchase in column (b).

Table 1.6

1. ¢,e,h,h t, t, f 8. xx|xx|xx]|x
2. ¢,¢c¢c,c.ht, f 9. xxxXx|x|x|x
3. ¢,c,c,c¢c,¢,f 10. xxxxxx|||x
4. h,t,t,f, f, f 11, | x| xxX|XXXX
5. t, 6ttt f, f 12, || xx XXX | XX
6. t,t,t,t,t,tt 13. ] | XXX XXXX|
7. f, (6, 1, 1, f 14. ||| X XXX XXX
a

)

(b)

For a purchase in column (b) of Table 1.6 we realize that each x to the left of the first
bar (| ) represents a c, each x between the first and second bars represents an h, the
x's between the second and third bars stand for t’s, and each x to the right of the third
bar stands for an f. The third purchase, for example, has three consecutive bars
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because no one bought a hot dog or taco; the bar at the start of the fourth purchase
indicates that there were no cheeseburgers in that purchase.

Once again a correspondence has been established between two collections of objects,
where we know how to count the number in one collection. For the representations in
column (b) of Table 1.6, we are enumerating all arrangements of 10 symbols
consisting of seven x's and three |'s, so by our correspondence the number of different

purchases for column (a) is.
100 (10
731 7

In this example we note that the seven x's (one for each freshman) correspond to the
size of the selection and that the three bars are needed to separate the 3+1= 4 possible
food items that can be chosen.

When we wish to select, with repetition, r of n distinct objects, we find (as in Table
1.6) that we are considering all arrangements of r x's and n - 1 |'s and that their
number is

(n+r—1)! n+r—1
r(n—1)! r

Consequently, the number of combinations of n objects taken r at a time, with
repetition, i1s C (n +r— 1, r).

(In Example 1.36, n =4, r =7, so it is possible for r to exceed n when repetitions are
allowed)

Example 1.37

A donut shop offers 20 kinds of donuts. Assuming that there are at least a dozen of
each kind when we enter the shop, we can select a dozen donuts in C (20 + 12 - 1, 12)
=C(31, 12) = 141,120,525 ways. (Here n =20, r = 12.)

Example 1.38
President Helen has four vice presidents: (1) Betty, (2) Goldie, (3) Mary Lou, and (4)

Mona. She wishes to distribute among them $1000 in Christmas bonus checks, where
each check will be written for a multiple of $100.
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a) Allowing the situation in which one or more of the vice presidents get nothing,
President Helen is making a selection of size 10 (one for each unit of $100) from
a collection of size 4 (four vice presidents), with repetition. This can be done in
C(4+10-1,10)=C(13, 10) =286 ways.

b) If there are to be no hard feelings, each vice president should receive at least $
100. With this restriction, President Helen is now faced with making a selection
of size 6 (the remaining six units of $100) from the same collection of size 4, and
the choices now number C(4+6- 1,6) = C(9, 6) = 84. [For example, here the
selection 2, 3, 3.4, 4, 4 is interpreted as follows: Betty does not get anything
extra—for there is no 1 in the selection. The one 2 in the selection indicates that
Goldie gets an additional $100. Mary Lou receives an additional $200 ($100 for
each of the two 3's in the selection). Due to the three 4's, Mona's bonus check will
total $100 + 3($100) = $400.]

c) If, each vice president must get at least $100 and Mona, as executive vice
president, gets at least $500, then the number of ways President Helen can
distribute the bonus checks is

C3+2-12)+C3+1-1)+C3+0-10)=10= C(4+2-12)

Mona  gets Mona  gets Mona  gets Using

the

exactly  $500 exactly  $600 exactly  $700 technique in  part(b)

Having worked examples utilizing combinations with repetition, we now consider
two examples involving other counting principles as well.

Example 1.39

In how many ways can we distribute seven bananas and six oranges among four
children so that each child receives at least one banana?

After giving each child one banana, consider the number of ways the remaining three
bananas can be distributed among these four children. Table 1.7 shows four of the
distributions we are considering here. For example, the second distribution in part (a)
of Table 1.7—namely, 1, 3, 3—indicates that we have given the first child
(designated by 1) one additional banana and the third child (designated by 3) two
additional bananas. The corresponding arrangement in part (b) of Table 1.7 represents
this distribution in terms of three b's and three bars.

These six symbols—three of one type (the b's) and three others of a second type (the
bars)—can be arranged in 6!/(3! 3!) = C(6, 3) = C(4+3 - 1, 3) =20 ways. [Here n = 4,
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r = 3.] Consequently, there are 20 ways in which we can distribute the three
additional

bananas among these four children. Table 1.8 provides the comparable situation for
distributing the six oranges. In this case we are arranging nine symbols—six of one
type (the o's) and three of a second type (the bars). So now we learn that the number
of ways we can distribute the six oranges among these four children is 9!/(6! 3!) =
C(@9, 6) = C(4+6 - 1, 6) = 84 ways. [Here n = 4, r = 6.] Therefore, by the rule of
product, there are 20 X 84 = 1680 ways to distribute the fruit under the stated

conditions.

Table 1.7 Table 1.8
1. 1,2,2,3,3,4 5. 0/]00]00]0
2. 1,2,2,4,4,4 6. 0/00]]000
3. 2,2,2,3,3,3 7. 1000000 |
4. 4,4,4,4,4,4 8. |1/000000

1. 1,2,3 5. b|b|b]|

2. 1,3,3 6. b||bb|

3. 3,4,4 7. ||b|bb

4. 4,4,4 8. |||bbb

(a) (b) (a)

(b) Example 1.40

A message is made up of 12 different symbols and is to be transmitted through a
communication channel. In addition to the 12 symbols, the transmitter will also send a
total of 45 (blank) spaces between the symbols, with at least three spaces between each
pair of consecutive symbols. In how many ways can the transmitter send such a message?

There are 12! ways to arrange the 12 different symbols, and for each of these
arrangements there are 11 positions between the 12 symbols. Because there must be at
least three spaces between successive symbols, we use up 33 of the 45 spaces and must
now locate the remaining 12 spaces. This is now a selection, with repetition, of size 12
(the spaces) from a collection of size 11 (the locations), and this can be accomplished in
C (11 +12—1, 12) ==646,646 ways.
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Consequently, by the rule of product the transmitter can send such messages with the
required spacing in (12!) =3.097 X 20}4 ways.

12
In the next example an idea is introduced that appears to have more to do with number
theory than with combinations or arrangements. Nonetheless, the solution of this example
will turn out to be equivalent to counting combinations with repetitions.

Example 1.41
Determine all integer solutions to the equation
x;t+tx;tx; +x4=7, wherex;>0forall1<i<4.

One solution of the equation is x; = 3, x2 = 3, x3 = 0, x;, = 1. (This is different from a
solution such as x; = 1, x; = 0, x3 = 3, x4, = 3, even though the same four integers are
being used.) A possible interpretation for the solution x; = 3, x, = 3, x3 = 0, x;, = 1 is that
we are distributing seven pennies (identical objects) among four children (distinct
containers), and here we have given three pennies to each of the first two children,
nothing to the third child, and the last penny to the fourth child. Continuing with this
interpretation, we see that each nonnegative integer solution of the equation corresponds
to a selection, with repetition, of size 7 (the identical pennies) from a collection of size 4
(the distinct children), so there are C(4 +7 - 1,7) = 120 solutions.

At this point it is crucial that we recognize the equivalence of me following:
a) The number of integer solutions of the equation
X +x,+..+x, =r, x,20, I1<i<n
b) The number of selections, with repetition, of size r from a collection of size n.

c¢) The number of ways r identical objects can be distributed among n distinct
containers.

In terms of distributions, part (c) is valid only when the r objects being distributed are
identical and the n containers are distinct. When both the r objects and the n containers
are distinct, we can select any of the n containers for each one of the objects and get n"
distributions by the rule of product.
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When the objects are distinct but the containers are identical, we shall solve the problem
using the Stirling numbers of the second kind (Chapter 5). For the final case, in which
both objects and containers are identical, the theory of partitions of integers (Chapter 9)
will provide some necessary results.

Example 1.42

In how many ways can one distribute 10 (identical) white marbles among six distinct
containers?

Solving this problem is equivalent to finding the number of nonnegative integer solutions
to the equation x; + X, + ... + X¢ = 10. That number is the number of selections of size 10,
with repetition, from a collection of size 6. Hence the answer is C(6 + 10 — 1, 10)
=3003.

We now examine two other examples related to the theme of this Section.

Our next two examples provide applications from the area of computer science.
Furthermore, the second example will lead to an important summation formula that we
shall use in many later chapters.

Example 1.43

Consider the following program segment, where 1, j, and k are integer variables.
fori:=1 to 20 do
forj:=1toido
fork:=1tojdo
print (i * j + k)

How many times is the print statement executed in this program segment?

Among the possible choices for i, j, and k (in the order i-first, j-second, k-third) that will
lead to execution of the print statement, we list (1) 1, 1, 1; (2) 2, 1, 1; (3) 15, 10, 1; and
(4) 15, 10, 7. We note that i = 10, j == 12, k = 5 is not one of the selections to be
considered, because j = 12 > 10 = i; this violates the condition set forth in the second for
loop. Each of the above four selections where the print statement is executed satisfies the
condition 1 < k <j <1i < 20. In fact, any selection a, b, ¢ (a < b < ¢) of size 3, with
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repetitions allowed, from the list 1, 2, 3,.... 20 results in one of the correct selections:
here, k = a, j = b, i = c. Consequently the print statement is executed

20+3—-1 22
= =1540¢times

If there had been r (> 1) for loops instead of three, the print statement would have been
executed times. 20+r—1

Example 1.44 ( r j
Here we use a program segment to derive a summation formula. In this program segment,
the variables i, j, n, and counter are integer variables. Furthermore, we assume that the
value of n has been set prior to this segment.

counter : =0

fori:=1tondo
forj:=1toido
counter : = counter +1

From the results in Example 1.43, after this segment is executed the value of (the
variable) counter will be (n +2— lj B [n + lj
2 L2 )

(This is also the number of times that the statement
(™) counter : = counter +1
is executed.)

This result can also be obtained as follows: when i := 1, then j varies from 1 to 1 and (*)
is executed once; when i is assigned the value 2, then j varies from 1 to 2 and (*) is
executed twice; j varies from 1 to 3 when 1 is assigned the value 3, and (*) is executed
three times; in general, for 1 < k < n, when 1 := k, then j varies from 1 to k and (*) is
executed k times. In total, the variable counter is incremented [and the statement (*) is
executed] 1+2+3+...+n times.

Consequently,

N

+1
i=14+243+...+n= " =M
i=1 2 2

The derivation of this summation formula, obtained by counting the same result in two
different ways, constitutes a combinatorial proof.
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UNIT 6

PRINCIPLE OF INCLUSION AND EXCLUSION

The Principle of Inclusion and Exclusion

Let S be a set with |S]=N, and let ¢y,¢5 ,...,¢; be a collection of
conditions or properties satisfied by some, or all, of the elements
of S. Some elements of § may satisfy more than one of the
conditions, whereas others may not satisfy any of them.

N(c¢;): the number of elements 1n S that satisfy condition ¢;
N(c;e j ): the number of elements 1n § that satisfy both of the
conditions ¢;,¢;, and perhaps some others
N(e; )=N—N(ep)
N{a c__Jr ): the number of elements in S that do not satisfy either of
the conditions ¢; or ¢ (= N(cicj))

Mo <) e %)

N(cicj)

N(e: ¢} N-ANE;) . Nee )]
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Corollary 8.1 The number of elementsin S that satisfy at least
one of the conditions is NV - V.
Notations
S, =N,S, =D N(,),S, =D N(gc,),

> S, =ZN(cilci2 ¢, )l =k<=zt.
Ex. 8.1 Determine the number of positive integer n wherel < n <
100 and 7z is not divisible by 2,3, or 5.
Here S = {1,2, .,100}, N =100, ¢, : divisible by 2, ¢, : divisible
by 3, ¢; : divisible by 5.

Nleoyey)=8,— S, +8, - S, = 100—&120J + ngoj + L%D

100 100 100 100
+ + + —| | =26
[L2X3J LZXSJ {3><5Jj L2><3><5J

N =N — ZN(CZ.)—I— ZN(CI.CJ.)— ZN(CiC_/'Ck)

1<i<t 1<i<j<t 1<i<j<k=<t

+ + (_ 1)t N(c,c, c,)

If x satisfies none of the conditions, then x is counted once in N
and once in NV, but not in any of the other terms. Consequently, x
contributed a count of 1 to each side. The other possibility is that x

satisfies exactly » of the conditions, 1 < » <. In this case x

contributes nothing to . But on the right - hand side, x is counted

r r A7 .
l—r—i—( j—( j+ +(—1)( j=[1+(—1)]r=0r=0tlmes.
2 3 r
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lasg=|4 @ -|lama)=25+13 -8 =30

|',q|'-:35 farm @]l—& lsl— i =

EFRoLU'ERE E The Zet of Sterdarets oy 2
IMiscoeie MMathematsos Class.

Hew many positive integers not exceeding | 000 gre divisible by 7 or 117

Senfaariorrr: Let A be the set of posilive imcgers nof esceeding 10K thar are divisibie
by 7. amd ler 8 be the sel of positive incegers nol excoceding (000 that are divisibles
bw 11, Then A 1) B is the set of inbcgers nod exceeding 1N that are divisible by ei-
ther 7 or 11, and A M B is the set of ilMegers not exceeding (GO0 char are divisibie by
both 7 oand 11, From Exasnple 2 of Section 2.3, we know that among the positive in-
regers nol exceeding [ there are [ 10000 7| invegecs divisible by 7 and ( OO0 1T |
divisible by 11, Since 7 amd 1] are relatively prome. the imegers divisible by both
P amd 11 are these divisible by 7 - 11, Conseguently, there are | 100011 - Ty posio
tive intcpers et excococding 1O that are divisibie by both 7 a2nd 31, It follows that

there are
AL B = Al & - A F
=EE“'_°!9 +I]% _I%
r 11 T-11
= 1942 + 59D — 2
= Z20

positive incgers not cacocding 1CHHE that arc divisitle by either 7 or 11, FThis commp-
tarjon (s illusreated §in Faure 2. -

lavial=laj+ & —|amal=raz v -1z =220

{Al = raz farnal=12 | = s
FIGURE 2 The Set of Positive Integers Not
Excoeding 1M Divisible by Either T or 11. s
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1 .
In general, ®(n) = n I I [1 - —j, where the product is taken
pln p
over all primes p dividing ». When n = p, a prime,

c1>(n)=cb(p)=p[1—ij=p—1.
P

Ex. Construct roads for 5 villages such that no village will be

& |
O.K. not O.K.

Ex. 8.6 Construct roads for 5 villages such that no village is isolated.

5
N = 2(2J = 2'° ¢, : village i is isolated for 1 <i < 5.

_ oo @2@ N @2@ _ @2@ (P (e =

Finding a Formula for the Number of Elements in the Union of Three Sets.

11 i ol e lements by thl Coume of elemsnes by (61 Cuuml af elements by
il ¢+ [al+ g+ e [+ & +|e] A m -
lang-leac] lang|-|lgnc]+ |an s
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A totak o 1732 stocemis have tiken o course 1 Spanish, B79 howve tuken o course in
French., #nd 1 B4 have taken a course in Russian. Furtheo, 103 have taken oourses in
hoth Spanish and French, 23 have tuken courses in bolh Spanixh andd Roscwn, aimd 14
have taken courses in both French amne Russian, IF 2082 stodenos have laken @l lens one
of Spanich, French, and Russian., furw many studenis have aken o course i all cheee

langrerages™

Serlateerns Lot 5 be the set of students who have mken a courss im Spanisbe & the ot er
studernts who foive taken 2 cowrse in French, and & the =2t of students woho hove fakeo

w conrse in Bossian. Then
%] = 1232 |F = &T9. H — 114
Em = 103, e - 23 IF i Bl — 14,

und
I F R = e
loserting these quantities (0o the aquuation
B Fi R = |5 -~ F )R- s Fl— SR - RS E oy B/

FLERNTER
22— J2FZ + /70 ~ 14 - M 23— 1L - 5™ Fm R

Salving for |80 F 7 & shows than 51 F 010 %] = 7 Theretore, there are seven students

whoe have laken coarses in Spanish, Freach, and Russian, This i illustrared in Fag-o
L

ure 5,

|gmErR]= |5 Fi=103

[Frg|=14

iml=114

|51 F1 8| = 200

FIGURE £ The Sct of Students Wha Have Taken Courses in Spanish, French, and
Russinn.
Give a fonmula for the number of el2ments in the smion of four sels.

Selutton: The inclusinn—exclusion principle shows that

A LA U A Ayl = |Ag] + Az + fAs| 4 A
= AL M A — A 1 Azl — [Ay T Aa] — 1A M Ax] — Az 00 Ag| — Ag 1Ay
+ 1AL DV A M AR Ay T A T A F Ay DA T A+ A T Ay D Ay
— AL M A D Ay N oAg

Motz that this formula contains 13 different termms, one for each nonemply subscr of
14, Aa Ay ALt =
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Generalizations of the Principle

If meZ and1<m < ¢, we now want to determine £, ,
which denotes the number of elements in S that satisfy

exactly m of the 7 conditions. (At present, we can obtain £)

cy E,:regions 2,3.4

vcg o ()< ()en
“ cs B2 =52 —353=52 _[ 53
cs Ey =S5

Theorem 8.2 Foreach 1 < 72 < 7, the number of elements in S

that satisfy exactly 7z of the conditions ¢,,c,, ,c, 1s given by

m + 1 m + 2 o z
Em = Sm — Sm+l -+ Sm+2 - +(_1) ” St
1 2 T —m

Proof : Let x € S, consider the following three cases :

(a) x satisfies fewer than 7z conditions : it contributes O to both
side

(b) x satisfies exactly m of the conditions : it contributes 1 to
both side (£,, and S,,,)

(c) x satisfties » of the conditions, where 772 < » < 7. Then x

contributes nothing to £,,. For the right side, x is counted
r m +1 7 m + 2 7
— + — “+
1 1 m + 1 2 m + 2
r r .
(—1)r_m[ j[ j times. For O < k£ < 7 - 72,
r—m )\ r
m + k r _ (m+ K)! ! B
i m+ k) Klm! (m+ ) (r—m — k)

7! 1

_ B 1 _ (7 — m)! (N r—m
m! K\ (r—m—Kk)! m\(r—m)! K\ (r—m—Kk)! m i

Consequently, on the right hand side, x is counted

091G o G K U R (e |

( d j(l — 1) = O times.
m
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Let L, denote the number of elements in S that satisfy at least

m of the r conditions. Then we have :

m m—+1
Corollary 82 L, =S5, —[ ]Smﬂ +[ ljS”HZ -+
m —_—

m—1
e T )s
=D [m—lj a

Wh 1,L, =S (ljs +[2js +( 1)’1[t_1j5
enm = 1, Ly = o — 2 3 - ‘
0 0 0

=S, —-S,+S,— + (DS =N-N
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How many salurioms does
1+ a3+ay =11
fave, where v, xa,and £ are nonnegative inlegers with v; = 30 = doand x, = 67

Salutic: Toapply the principle ol inclusion-exclusion, lot a solution have property P

15 x; = & propecty Fi 18 v = 4, and property Py iy x1 > 6. The number of solutions
satisfving the inegqualities x; = 3, v = 4 and 13 = & i3

NP PG = N - NP = NP - NP3 E NUP Pa) = NUP P+ NP P

- Nt F| AP

Using the same rechmgues as in Example 6 of Section 3.6, 1f foflews that

& & = tolal pumber of solutions = CI3+ 11 =111 = T8,
w ¥(P} = (mumberof solutiots with xy = 4 = O 717 = €% T = 36,
® NP = {number of solutions with 1o 2= 5) = C(346- 1.6) = C4R.6) — 24,
= NiF) = {pumber of selutions with s = 7) — 03 +4- 1.4 — 6 31 — 15
" NP Py} = (number of solutions with 1, = damdxa =31 - (W3 -2 1,21 -
Cid, 25 = 8,
& NoPy Py} = (numberotsolutions withy) = dandxs = 7 = C3+0-1.00 = 1
® NP2y = (number of solutions with v» = Sand 13 = 71 = 0,
= NP FyPy) = {number of solstions with vy =2 4, 12 = S,and g = T1 = 11,
Inserting these quantities inle the formula fur N(P PP} ) shows thet the number ot
solntions with x; = 3, x; =< 4 and vy = Heguals
NP P = TR - 36— 28— 15+6+140-0=6 [

Derangements: Nothing Is in Its Right Place
A derangement is a permutation of ohjects that heaves no ohject in its vriginul posinog

Theorem:
The ramber of demnpements of 8 s=0 with s eclements is
i [ 1 i
= T —_— — — —— - - —_ i ——
a "'[t TR T T S u!]‘
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Proof: Lol a permutation have property &, if it ixes element i The numiber of derangze-
ments is tike nuember of permutations having none af the properties & ford = [, 2, ., |

. or
Dy = NP P, 20
Lising the prnciple of imclusion —exclusion, o follows that

Po = N - 7> NP+ > NP — 7 NOPP, P
u J-\'-_,- a-\.u-'l:

d o = LN Py - B,

wehere & is the somber of peomuottions of a elements. This eguasion staces phat the am-
per of perrmmutations that fix o clements cguals the total number of pormutations. leas
the number that Ox at least one elerment, plus the numlbser thaiee fix at leaso vaso elements.
lzss the surnber that hix ar least theee clemests. and so on. All the gquantities that occoar

nn the right-band side of this equation a5l o be foumd,
birer, nore e &N = ol =ince & is simply the toial number of permugtations of s

clements. Also, M) = (e — il This follows from the prodoact rule, since A0 ) is
The number of permuatations that ix element i 5o that the ith position of the porometa-
tion ix determined. but each of the rermaining pesitions can be Alled arbitrandy. Simmi-

larkby,
NP P = (n— 23,
since thas is the nember of poromutations that ix clements § and §f, but where thes other

L] 2 glemenis can be arranged arbitrarily. In gencral, nete that

HLP:.PJJ T P|,...,.:| — [ﬂ' = i‘l‘il:l..
hercanse this is The niamber of permutarions thot Ax elements 7, §x, .. . i, . bur where the
other n — me clements can be arranged arbitrarily. Because there are ©(a. s wavs o
choose m clomoents: froam e, 0 Fodlows fhal

STOANAT = Ofn Lie — 1),

| =3=n

T NIPF Y = e e — 230,

=T a=

and in gemeral,
o NP, P e Pe ) = Ol mbia — m)l

T e

Comsesguendly. insening these quantitics into vur formula for DY, gives

fr, — el — e, D — bW o+ COer 290 — 20 — - s b — B0 P'I]{n' - papl
ral rr!
— r — e j— ! oo =T 241, | ERe -
B T e e e (=i + (=1 .,-_,..

Simplifying this exprassion gives
] 1 1
}Ji — ! [ == L R ==; L
! S [ 2! = ! } =]

Ex. Find the number of permutations such that 1 is not in
the first place, 2 1s not in the second place, ..., and 10 is not in

the tenth place. (derangements of 1.2.3.....10)

c, :7Z1s 1n the 7ith place for 1 <

i

10
dyy = N(cica  c9)=101— o1 S
11 -
=10'(1 —1 + — — — + —+ since
21 3 10!
145
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Ex. Assign 7 books to 7 reviewers two times such that
everyone gets a different book the second tammes.
Ans: first time 7!, second time d,;

therefore, 7! 4,

LSO A S i e

= the number of derangements of 1.2,

Rook Polynomials

In combinatorial mathematics, a rook polynomial is a generating polynomial of the
number of ways to place non-attacking rooks on a board that looks like a checkerboard;
that is, no two rooks may be in the same row or column. The board is any subset of the
squares of a rectangular board with m rows and »n columns; we think of it as the squares
in which one is allowed to put a rook. The board is the ordinary chessboard if all squares
are allowed and m = n = 8 and a chessboard of any size if all squares are allowed and m =
n. The coefficient of x* in the rook polynomial Rs(x) is the number of ways k rooks, none
of which attacks another, can be arranged in the squares of B. The rooks are arranged in
such a way that there is no pair of rooks in the same row or column. In this sense, an
arrangement is the positioning of rooks on a static, immovable board; the arrangement
will (usually) be different if the board is rotated or reflected.

The term "rook polynomial” was coined by John Riordan. Despite the name's derivation
from chess, the impetus for studying rook polynomials is their connection with counting
permutations with restricted position. A board B that is a subset of the n x n chessboard
corresponds to permutations of n objects, which we may take to be the numbers 1, 2, ...,
n, such that the number a; in the j-th position in the permutation must be the column
number of an allowed square in row j of B. Famous examples include the number of ways
to place n non-attacking rooks on:

e anentire n X n chessboard, which is an elementary combinatorial problem,;

o the same board with its diagonal squares forbidden; this is the derangement or
"hat-check" problem,;

o the same board without the squares on its diagonal and immediately above its
diagonal (and without the bottom left square), which is essential in the solution of
the probléme des ménages.
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Interest in rook placements, i.e., in permutations with restricted position, arises from pure
and applied combinatorics, group theory, number theory, and statistical physics. The
particular value of rook polynomials comes from the utility of the generating function
approach, and also from the fact that the zeroes of the rook polynomial of a board provide

valuable information about its coefficients, i.e., the number of non-attacking placements
of k rooks.

Definition

The rook polynomial of a board B, Rg(x), is the generating function for the numbers of
arrangements of non-attacking rooks:

Rp(x) = i ri(B)x*

where 7, is the number of ways to place k£ non-attacking rooks on the board. Despite the
notation, this is a finite sum, since the board is finite so there is a maximum number of
non-attacking rooks it can hold; indeed, there cannot be more rooks than the smaller of
the number of rows and columns in the board.

i.  Complete boards
The first few rook polynomials on square n x n boards are (with R, = Rj):

Rilzl=x+1

Rifzi=2x"+4x 41

Rilxj=16a® + 18 4+ 9 + 1

Ryfr) =242 + 962 + 7222 + 16z + 1.
In words, this means that on a 1 x 1 board, 1 rook can be arranged in 1 way, and zero rooks can
also be arranged in 1 way (empty board); on a complete 2 x 2 board, 2 rooks can be arranged in

2 ways (on the diagonals), 1 rook can be arranged in 4 ways, and zero rooks can be arranged in 1
way; and so forth for larger boards.

For complete m x n rectangular boards B, , we write R, , := Rgmn . The smaller of m and n can be
taken as an upper limit for k, since obviously r,=0 if kK > min(m,n). This is also shown in the
formula for Ry, ,(x ).

The rook polynomial of a square chessboard is closely related to the generalized Laguerre
polynomial L,%(x) by the identity:

Rpn(z) = nla" L™ ™ (=271,
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ii. Matching polynomials
A rook polynomial is a special case of one kind of matching polynomial, which is the generating

function of the number of k-edge matchings in a graph.

The rook polynomial R, ,(x) corresponds to the complete bipartite graphK,,,. The rook

polynomial of a general board B @ B,,, corresponds to the bipartite graph with left vertices v;,
V2, ..., Vim and right vertices wy, wy, ..., w, and an edge v,w; whenever the square (i, j) is allowed,
i.e., belongs to B. Thus, the theory of rook polynomials is, in a sense, contained in that of
matching polynomials.

We deduce an important fact about the coefficients r,, which we recall give the number of non-
attacking placements of k rooks in B: these numbers are unimodular, i.e., they increase to a
maximum and then decrease. This follows (by a standard argument) from the theorem of
Heilmann and Lieb about the zeroes of a matching polynomial (a different one from that which
corresponds to a rook polynomial, but equivalent to it under a change of variables), which
implies that all the zeroes of a rook polynomial are negative real numbers.

Determine the number of ways in which & rooks
can be placed on the chessboard so that no two
4 of them can take each other, 1.e., no two of them
are 1n the same row or column of the chessboard.
Denote this number by 7 or 77(C).

tsJ
o
—

th
o

n=6r=8rn=2n=0,fork=>4

With rp =1, the rook polynomial
r(C,x)=1+6x +8x?% + 2x°

idea: break up a large board into smaller subboards
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¢

Did this occur by luck or 1s something
C, happening here that we should examine
more closely?

C
(C,x)=1+4x+2x",r(C,,x)=1+7x+10x> +2x°
(C,x)=1+11x+40x> +56x> +28x" +4x° = r(C,,x) - r(C,, x)

cll

To obtain 5 foxr C:

(a) All thwree Tooks arce o Co:-:(2(1L))— wayvys
(b)) Two on C, and once on C,; - (10YC4A4)—A40
(c) Ome on C, and tvwo o CL:=C7OCZ2)O—14
total—C2 (A1 (A O0OH I (7THCCH—So

In general, if C is a chessboard made up of pairwise disjoint
subboards C,,C,, ,C, ,then »(C,x)=7r(C,,x)r(C,,x) r(C,,h6x).

(C,x)=1+4x +2x>,7(C,,x)=1+7x+10x> +2x>
(C,x)=1+11x+40x> +56x> +28x* +4x”> = r(C,, x) - r(C,,x)
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decompose this board according to (*)

C. put one at *

K

. / ¥ g empty C

1+ Zrk(C)xk = x E r'kil(CjS))ck*1 —+ E Vk(Ce)xk + 1
=1 k=1

k=1

r(C.x)=x-r(C_.x)+r(C_.x)

e
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= x"(1+2x)+2x(1+4x +2x°)+x(1 +3x +x7) +
[x*(1+2x)+ (1 +4x +2x>)]=1+8x +16x> +7x"

Arrangements with Forbidden Positions

Ex. Arrange 4 persons to sit at five tables such that each one

sits at a different table and with the following conditions satisfied:
(a) R, will not sit at T, or T, (b) R, will not sit at T,

(¢) R; will not sit at T; or T, (b) R, will not sit at T, or T,

T,T,T,T,T;

condition ¢;: R; 18 1n a forbidden position

It would be easier to work with the shaded area
since it is less thhan the mnshaded omne.

Tl_i_?_lz_uri_i%;%rsls N(clczc3c4)= Sy — S5, +5, — 55 +5,.

condition c;: R; is in a forbidden position

PEEF

TRV ETR (e X sam & forbiddsm position
S, = P(5,4) =5!,S, =r(5—1i)!, where 7 is the number of ways

in which it is possible to place i nontaking rooks on the shaded
chessboard.

"(C,x)=A+3x+x)A+4x+3x>)=1+7x+16x> +13x> + 3x*

So NG ere,) = S (=1 (5 — i) = 25
i=0
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Ex. We have a pair of dice: one 1s red. the other green. We roll
these dice six times. What is the probability that we obtain all six
values on both the red dice and the green die if we know that the
ordered pairs (1.2), (2.1).(2.5).(3.4).(4,1),(4,5), and (6,6) did not
occur? [(x,y) indicates x on the red die and y on the green. ]

Relabeling
,1) the rows and })
:.: columns 1
1 — :
B 5
6 6

For chessboard C of seven shaded squares,

"(C,x)=+4x+2x)A+x)’ =1+7x+17x> +19x> +10x* +2x°

¢;: the condition where, having rolled the dice six times, we find
that all six values occur on both the red die and the green die, but
i on the red die is paired with one of the forbidden numbers on the
green die

Then the number of ordered sequences of the six rolls of the dice
for the event we are interested in 1s:

6!N(clczc3c4csc6): o! 26 (—1)'sS, =
=0

(&)
6! > (—1) 756 —i)!'=138,240
i=—0O

The probability is 138240/(29)° = 0.00023
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UNIT 7
GENERATING FUNCTIONS

Consider the Problem.

Mildred buys 12 oranges for her children Grace, Mary, and Frank. In how many
ways she can distribute oranges so that Grace gets at least four, Mary and Frank gets at
least two, but Frank gets no more than five?

The following table lists all possible distributions.

G MF GMF GMF
4 35 5 3 4 6 4 2
5 44 5 4 3 7 2 3
6 53 5 5 2 7 3 2
7 6 2 6 2 4 8 2 3
525 6 3 3

We see that we have all the integer solutions to the equation
Considering the first two cases in this table, we find the solutions
4+3+5=12and4+4+4=12.
When we multiply three polynomials
(x" +3x° +x® +3x7 +xx? Xx2 +3% +x* +3x®% +x° )
(x2+x3 +x* +x5) ....... (1)
Two of the ways to obtain x/2 are as follows;
1.From the product x4x3x5, where x4 is taken from (x4 + x5 + x6 + x7 + x8)
and x3 is taken from (x2 + x3 + x4 + x5 + x6) and x3 from (x2 + x3 + x4 + x9).
2. From the product x4x4x4,where first x4 is found in first polynomial, the second x4 is

found in second and third x4 in third polynomial.
Examining the eqn(1) in previous slide more closely, we realise that we obtain the

product xixixk for every triplet (i, j, k) that appears in the table of possible solutions.

Consequently the coefficient of x/2 in the f{x) counts the number of distributions which
is 14.

f(x =(x4 +x° +x® +x’ +x8Xx2 +x% +x* +x° +x6)
(xz +x? +x* +x5) ....... (2)

[I'he function f(x) is called generating function for distribution]

The factor (x4 + x9 + x6 + x7 + x8) indicates that we can give 4 or 5 or 6 or 7 or 8 of the
oranges to Grace. The coefficient of each x is one because oranges are identical objects
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and there is only one way to distribute four oranges to Grace and one to give five oranges
and so on. Since Mary and Frank must get at least two oranges each, the other terms (x2
+x3 + x4 + x5 + x0) and (x2 + x3 + x4 + x5) start with x2 and for frank we stop at xJ so
that he does not receive more than f oranges.

The same can be modeled as under also.

Find the number of integer solutions to

o i xt X +x0+x" +x% = (%)

X+ X +xt+ 2 +x% =, (%)

e+ x +xt+ X7 = (x)

The coefficient of x'* in £ (x) = ¢,(x)c, (x)c;(x),

which is 14, is the answer.

f(x)is called a generating function for the distributions.

Example:
If there are at least 24 number of red, green, white and black jelly colors beans, in

how many ways can Douglas select 24 of these candies so that he has even number of
white beans and at least six black ones?
The polynomials associated with colors are as following :

l.red:1+x+ x> +.....+ x*, where leading 1 is for 1x°, because one
possibility for the red is that none is selected.

2.Green : 14 x+x° +.....+x*, where leading 1 is for 1x°, because one
possibility for the green is that none is selected.
3.white:(1+x° +x* +x°....+x™)

4black : (x® +x" +x* +...... +x7)

One such selection is five red, three green, eight white and eight black jelly. This
arises from x9 in the first factor, x3 in the second factor, x8 in the third factor and

X8 in the forth factor.

Example:How many integer solutions are there for the equation?
c,+e,+c;+c, =25 0<c,1<i<4?
For each c,, the possibility can be described by
1+x+x>+ +x>.Then the answer is the coefficient of x*
in the generating function :
f(x)= (1+x+x2 + +x25)4 or
1
(1-»

g(x)=(1+x+x2+ +xP +x% + )4 =(1-x)"
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Example:

Determine the generating function for the n-combinations of apples,
bananas,Oranges and pears where in each n-combination the number of apples is Even,
the number of bananas is odd, the number of oranges is between 0 and 4, and there is at
least one pear. The problem is finding the number of nonnegative integral solutions of
e]te2+e3+eq4=n where e] is even that counts number of apples, €2 is odd that counts
number of bananas, 0 < e3 < 4 that counts number of oranges, and e4 > I that counts
number of pears. Create one factor for each type of fruit where the exponents are
allowable number’s in the n-combinations for that type of fruit.

g)=0+x"+x* +. )+ + 0 + L) x+xT+x +xt)
(x+x>+x*+.).
Where the first factor corresponds to apples, second for bananas, third for oranges and
fourth for pears and

1
T+x*+xt+...= >
l-x
3 5 2 4 X
X+x +x +=x(1+x"+x"+....)= 5
I-x
1-x°
T+x+x*+x° +x*..=
-X
X
x+xt+xt =
I-x
Thus,
1 x 1-x x

g(x)=1_x2 1-x>"1-x 1-x

3 x*(1-x")

(=2 (=)
Hence the coefficients in the Taylor series for this rational function count the number of
combinations of the type considered.

Example:
If ek represents the number of ways to make change for k rupees, using Rs.1,

Rs.2, Rs.5, Rs. 10, and Rs. 100, find the generating function for ek.
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f(x) =(Rs1factor)(Rs 2 factor)(Rs 5 factor)(Rs 10 factor)(Rs 100 factor)
=(l+x+x>+xX+..)0+x7 +x +.0)
A+ +x+x" + )0+ x"+x +...)

A+x"+x*+ x4 .)

:(l-lxj(l—lxz j(l—lxs j(l—lx“’ L—ij

Definition.

Leta,,a,,a,, beasequenceof real numbers. Thefunction

o0
f()=ay+ax+a,x*+ =) ax'
i=0

is called the generating function for the given sequence.

ForanyneZ",

(o) @[J@ . U

so (1+ x)" is the generating function for the sequence

()G} oo

(@ForneZ ,(1-x"")=0-x)1+x+ +x").
n+l

1-
So X

1-x

is the generating function for 1,1, 1,0,0,

n+ll's

() If n >oand|x|<1,1=(1-x)1+x+x>+x"+ ).

So IL is the generating function for1,1,1,
-X
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(c) with

1 =
— =l x4+ X H =) X
1-x ;

taking the derivative,

d 1 5 1
———=(=-DA=-x)""(-D =
dx1—x =1 ) D (l—x)2

:di(1+x+x2+x3+ Y=14+2x+3x" +4x° +
x

| ) ) .
Consequently, (1—)2 is the generating function of 1,2,3, , while

X
(1-x)’

is the generating function for the sequence 0,1, 2, 3, 4,

=0+1x+2x>+3x° +4x* + ...

(d) Continuing from part c,

4 _x 2=i(0+x+2x2+3x3+4x4+....),
dx (1-x)" dx
or
R N R T
(1-x)
hence
X+ 13 generates 1°,2°,3%,4°,.....
(1-x)
and
x(x+1)

generates 0°,17,2%,3%,4%,

(1-x)°

(b) Find the generating function for 0,2.6,12,20,30.,42,

a, =0=0>+0, a =2=1>+1,
a, =6=2>+2, a, =12 =3 +3,
a, =20 =47 + 4,
In general, we havea,_, = n° + n, for each n = 0.
Therefore, the generating function is
x(1+ x) x

Ad—x°  d—x)°
 xX(x+1)+x(1-x%)
B a—xy°
. 2x
Ca—x
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Extension of binomial coefficient :

For each n belongs to Z*, the binomial theorem tells that

(1+x)" :(nj+(n)x+(njx2 +..... +(njx”

We want to extend this idea where a) n<0 and b) n is not necessarily integer
Withn,r e Z" andn >r > 0, we have

(n} n! _ n(n=1)(n-2) (n—r+1)

r

_r!(n—r)! r!
n(n-)(n-2) (n—-r+l)

r!

If neR, weuse as the definition

n -n
of ( ] For example,if n€Z", we have( j =
r r

(—n)(-n-1)(-n-2) (—n-r+1) _ =D'(n)(n+1) (n+r-1)

r! 7!

n+r-—1 n
=(-1) . And for any real n, define N =1.
r

. 2 n+r—1
Ex. Forne Z",(1+x)™ =Z(—1)r '
r=0 r

5[
- r=0 r
Ex. Find the coefficient of x” in (1-2x)”.

oy =l TN 32y 214784
5(—)—(—) s (=32)=14,784.

Ex.9.10 Find the coefficient of x'” in f(x) = (x> +x + )*.
8
X

= . The coefficient of x” in
—x

f@=[0+x+x>+ Hf =

1 . (-4 7
=) 15(7J(—1) =120
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Ex. In how many ways can we select, with repetitions allowed, » objects from # distinct
objects?

For each of the n distinct objects, the geometric series

1+x+x*+x’+ represents the possible choices for the

object. Considering all of the n objects, the generating functions

is f(x)=(1+x+x"+x’+ )", and the required answer is the

coefficient of x" in f(x). f(x)=(1-x)" = Z(_-njxi —
i=0 \_ 1

Z ) '.So the answer is .

i=0 l ad

Example:
In how many ways can a police captain distribute 24 riffle shells to four police
officers so each police officer gets at three shells but not more than eight shells?

The choices for the number of shells each officer receives are given by
A+ xt o+

There are four officers, so the resulting generating function is,

f(x) =" +xt+.+xP)0

We seek the coefficient of x24 in f{x). with

f(x) = +x*+.+xMH*

=xZA+x+x’+..+x°)*

2 1—x° !
l-x )’

the answer is the coefficient of x'* in
(1-x®)*.(1-x)"is
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Example:
2
) . (2n " (n
Verify that foralln € Z ,( j = Z( J .
n =\
Since (1+x)*" =[(1+ x)"]*, by comparison of coefficients,
2
the coefficient of x” in (1+ x)*", which is ( n} must equal the
n
2
coefficient of x" in HO) + (l]x +  + ( Jx"} , and that is
n
n\n n\ n n\n . (n n
+ + + . With = , the result
0\ n I \n-1 n)\O r n—r
follows.
Ex. Determine the coefficient of x* in ;2
(x-3)(x-2)
2
since 1 = [_—lj L (_—1) 1424 [fj +....|foranya # 0,
(x-a) a (1 X j a a \a
a
we could solve this problem by finding the co - eff of x® in
1 expressed as
[(x-3)Yx—27]
31 G)6) - FOCEME)
— 1+ = |+ = | + || = + — |+ — | .
3 3 3 4 )\ o 1\ 2 2 )\ 2
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Example:
Determine the coefficient of x* in ;2
(x-3)(x-2)
partial fraction decomposition :
1 A B C
~ = + + > or
(x-3)(x-2)" x-3 x-2 (x-2)
1= A(x-2)> + B(x —2)(x - 3) + C(x — 3). By comparing
coefficients, A =1, B=-1,and C = -1.Hence,

1 1 -1 -1 (—1) 1
= + + = — | —
(x-3)(x-2)> x-3 x-2 (x-2)° 3 )1-(x/3)

Tl
H =t
2)1-(x/2) 4 )1-(x/2))°

Example:

Use generating functions to determine how many four-element subsets of
$={1,2,3,...,15} contain no consecutive integers.
Consider one such subset {1,3,7,10}, and write 1<1<3<7<10<15. We see that this set of
inequalities determines the differences 1-1=0, 3-1=2, 7-3=4, 10-7=3 and 15-10=5 and
these differences sum to 14.

Consider another subset {2,5,11,15}, we write 1<2<5<11<15 <15; these
inequalities also yield the differences 1,3,6,4 and 0, which will sum to 14.
These examples suggest us a one-to-one correspondence between four element subsets to
be counted and integer solutions to c¢/+c2+c3+c4 +c5 =14 where 0 <cl, c¢5 and 2 <c2
,c3, c5.. The answer is the co-eff of x14 in

f)=+x+x>+x+. )+ +xt ) A+ x+x7 +x7 +.00)
=x°(1-x)".

This then is the co - eff of x* in (1—x)~ which is

(=)
=495
Example:

Use generating functions to determine how many four-element subsets of
S$={1,2,3,...,15} contain no consecutive integers.
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Let{a,,a,,a;,a,} be one such subset with

I<a <a,<a;<a, <15 Letc,=a,—-1,c,=a,—a_,
5

for2<i<4,andc, =15-a,.Then ZCi =14with0<c,,c;
i=1

and 2 <c,,c,,c,. Therefore, the answer is the coefficient of

x“infx)=(1+x+x*+ VP +x’+ )Y =x°(1-x)",

-5
which is[ . J(—l)8 = 495.

Example:

fx)=

X
(1-x)°

x(x+1)
(1-x)°

generates 0,1,2, (a,,a,,a,, )

and g(x) = generates 0°,1%,2%,  (b,,b,,b,, )

Then i(x) = f(x)g(x) = ickxk,where

k=0
¢, =a,b, +ab, ,+ab,_,+ +a,,b,+a, b +ab,

= k=i =Y ik = 2ki+it) = kY i

2
+[M} -Convolution of a,,a,,a,, andb,,b;,b,,
2

Example:

Find the co - eff of x* in (x8 +x7 +x" +....)7

7 7
(x8 +x’ +x"° +) = (x8)7(1+x+x2 +x° +)

:X%(Ly
1-Xx
=x° (1 - )c)_7

50, co - eff of x* in (X8 +x7 +x" Jr....)7 is the co - eff of x* in (1-x)”’

which is Cj(— 1) = (1)’ (”:'1)(— 1)
()
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+
1 -n -n -\ o )
7)(l+x)"=(0 }{1 Jx+(zjx +....—§(ijx

“1+ (-1)("+l_lj(—x) ; (—1)2("”_1)(—@2 ;.

2

Example:

In how many ways can a police captain distribute 24 riffle shells to four police
officers so each police officer gets at three shells but not more than eight shells?

The choices for the number of shells each officer receives are given by
X +x* +.L 4 x®
There are four officers, so the resulting generating function is,

F(x) = +xt . +x%)0

We seek the coefficient of x24 in f{x). with
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f(x) = +x* +.+xH%

=xZ(1+x+x>+...+x°)*

6 4
_x[ 1= ]
1—x

the answer is the coefficient of x'* in (1-x°)*.(1-x)*is

(]
(Yo (=]

=125

Example:

In how many ways can we select, with repetitions allowed, » objects from » distinct
objects?

For each of the n distinct objects, the geometric series 1+ x+ x° + x” +  represents the possible choices
for the object. Considering all of the 7 objects, the generating functionis f(x) =(1+x+x* +x’ + )",
and the required answer is the coefficient of x" in f(x).

f)=(-x)" = Zw](_i"}cf -

i=0

2 (n+i-1) . (n+r-1
z ) .So the answer is .
i=0 l r

) . (2n v (n)’
Ex. Verify that foralln e Z~, = Z .
n

i=0 \ !

Since (1+x)*" =[(1+x)"]*, by comparison of coefficients, the coefficient of x” in (1+x)*",

... (2n , Cl(n) (n n ? ‘
which is , must equal the coefficient of x" in 0 + . x+ +| [x" | ,andthatis
n n

L) Ll e
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Ex. Determine the coefficient of x* in ;2
(x-3)(x-2)
partial fraction decomposition :
1 A B C
= or

2 + + 2
(x-3)(x-2)" x-3 x-2 (x-2)
1=A(x-2)" +B(x-2)(x-3)+C(x—-3). or
0.x*+0x+1=(A+B)x* +(—4A4+5B+C)x+(44+6B-3C).
By comparing coefficients(for x*, x, and 1 respectively),
A+B=0, —44+5B+C=0,44+6B-3C =1
solving these equations we get,
A=1,B=-1,and C =-1.
1 1 -1 -1

2= + + 2

(x-3)(x-2)" x-3 x-2 (x-2)

S e D
(FRE)GEE) |
GEOCEIEET

The coeff of x® is

) -6GE) GG
SOEol

Hence,
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Another solution is,

s o G LT

for a # 0, we could slove this by finding

the coeff of x*in expressed as

LM

Example:
. Use generating functions to determine how many four-element subsets of
$={1,2,3,...,15} contain no consecutive integers.
Consider one such subset {1,3,7,10}, and write 1<1<3<7<10<15. We see that this
set of inequalities determines the differences 1-1=0, 3-1=2, 7-3=4, 10-7=3 and 15-
10=5 and these differences sum to 14.
Consider another subset {2,5,11,15}, we write 1<2<5<11<15 <15; these
inequalities also yield the differences 1,3,6,4 and 0, which will sum to 14.
These examples suggest us a one-to-one correspondence between four element
subsets to be counted and integer solutions to c¢/+c2+c3+c4 +c5 =14 where 0

<cl,c5 and 2 <c2 ,¢3 ,¢5..The answer is the co-eff of x14 in

f(x)=0 +x+x2 + x3 +....).(x2 +x3 + x4....)3

(1+x+x2+x3+....)

~x81-x73
This then is the co - eff of X8 in(1— x)_5 which is

HERERE
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Leth(x) = " X - This is the gen. fn fora,a,,a,...
wherea, =k forallk e N.
Letg(x) = x(x+1) This is the gen. fn for b, b,, b, ...

-x)*
whereb, =k’ forallk e N.
and the function,
h(x) = f(x)g(x) gives us
= ayb, +(a,b, + a,b,)x +(ab, +ab, + ab,)x* +...
which is the generating function for ¢, c,,c,,... where
c, =ab, +ab, +ab, ,+..a,_,b,+a, b+ab,.
The sequence ¢, ¢,,c,,...1s called convolution of sequences

a,,a,,a,...and b,,b,,b,...

Example. Find the convolution of the sequences 1, 1, 1, 1, ..... and 1,-1,1,-1,1,-1,....

1
let f(x)=—
=45
=14+X+X7+x +.....
= generates the sequence 1,1,1,1,...
1
let g(x)=—
&) (I+x)
=1-x+x"—x+....

= generates the sequence 1,-1,1,-1,...

Then
1 1
f(x)g(x) = m . (1+x)
1
(1-x%)

=l+x>+x+x°.....

= generates the sequence 1,0,1,0,1....

= which is convolution of 1,1,1,1,...and 1,-1,1,-1,...

Dept of ISE, S|BIT 167



Graph theory and Combinatorics 10CS42
Example : Find the co - eff of x* in (X8 +x” +x"+ )7

7 7
(x8 +x° +x" +) = ()c8)7(1+x+x2 +x° +)

(2
1-x
(1= x)”

s0, co - eff of x” in (x8 +x” +x" +....)7 is the co - eff of x* in (1-x)

which is C}4r=pﬂ{“j@ﬁ4

4
10
()
Example: Determine the co- eff of x0 in (4X3 - 5/x)16
The term x* in the binomial expansion (x + y)*

n
is ( jxk P,
n-k

Replace x by 4x° and y by (ij and n =16, we get,
X

(2]

:( 0 )(4)k.(_5)16k.x3k'x16k

16—k

For constant term (with x°) we must have,

X3k xl()*k — xO
Therefore, 3k +16-k =0,
Thus k =4.

The constant term s,

) 4 16-4
4°.(=5)""
[16—4) =3)
) 4 ci2
= 4.5
[12}

Example: Determine the sequence generated by (1 - 4x)-1/2
We know that,
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(1-4x)"? = (l/j + (”2)(—4@ + (”2)(—4@2 o

-1/2
The coeff of x" in( )(—4)”

n

(V)= ne 12 ne2)(C12)-012)

n!
_(1+2n-2)1+2n-4)...(A+2)(1) o
- n! .
) _ n | 2n
_(n-1)2n-3)..53.12" _ (2n) z( jwhereneN
n! n!n! n

Example: Determine the number of ways to color squares of a 1 x n chess board using
the colors, red, white, and blue, if an even number of squares are to be colored red.
Let ap be the number of such colorings, with ag = 1.

Let apn equals the number of n-permutations a multilist of three colors (red, white and

blue), each with an infinite repetition number in which red occurs an even number of
times. Thus the exponential generating sequence a(),a],a,..an.. is the product of red,

white and blue factors:

x2 x4 x2 X4 X2 X4
= l+—=+—+. | 1+x+—+—+.. | l+x+—+—+..
21 4 21 4 21 4

|
Q
=
+
Q
&
N—
Q
=
Q
=

R~ N~ N~

N —

Hencea, =

is the number of ways to

(3” +1
2
color the chess board.

Partitions of Integers
Partition a positive integer » into positive summands and seeking the number of such
partitions, without regard to order.This number is denoted by p(n).

For example, p(1)=1: 1
p(2)=2: 2=1+1
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p(3)=3: 3=2+1=1+1+1
P(A)=5: 4=3+1=242=2+1+1=1+1+1+1
P(5)=T: 5=4+1=3+2=3+1+1=2+2+1=2+1+1+1

=]1+1+1+1+1
We should like to obtain p(n) for a given n without having to list all the partitions. We
need a tool to keep track of the numbers of 1's, 2's, ..., n's that are used as summands for

n.
keep track of 1's:1+x+x> +x° +

keep track of 2's:1+x” +x* +x° +

keep track of k's :1+x" +x +x™* +
For example, p(10) is the coefficient of x'"° in

f)=0+x+x>+ YI+x>+x*+ ) (1+x"+ )

1 1 1 1 10 1
Ty S | s

In general, P(x) = H generate the sequence p(0), p(1),

i 1= x'
Exampe:Find the generating function for the number of ways an advertising agent can
purchase n minutes of air time if time slots for commercials come in blocks of 30, 60, or
120 seconds.
Let 30 seconds represent one time unit. Then the answer is the number of integer solutions to the

equation a + 2b +4c = 2n with 0 < a, b, c. The associated generating function is
) =0+x+x"+ YA+x"+x*+ YI+x* +x'+ )
R U
Cl-x1-x"1-x

7 and the coefficient of x*" is the answer.

Example: Find the generating function for pg4(n), the number of partitions of a positive

integer n into distinct summands.
Let us consider 11 partitions of 6:
DI+1+1+1+1+1 2)1+1+1+1+2 3)1+1+1+3

4)1+1+4 5)1+1+2+2 6)1+5
7)142+3 8)2+2+2 9)2+4
10)3+3 11)6

Partitions 6,7,9 and 11 have distinct summands, so P4(6)=4
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Forany k € Z", There are two posiibilities either & is not used as a summand or it is.

This can be accounted for by the polynomial 1+ x*. Consequently, the generating function is
P,(x)=1+x)1+x)1+x’) = H(1+xi)
i=1

foreachne Z*, p,(n) s the coeff of x" in (1+x)(1+x7%)......(1+x").and p,(0) =1.

when n = 6, the coeff of x® in (1+ x)(1+x°)......(1 + x*)is 4.

Considering the partitions, we see that there are four partitions of 6 into odd summands, namely1, 3,
6 and 10 in the previous example. We also have p ,(6) = 4. Let p,, (n) denote the number of partitions
of ninto odd summands, when n > 1. We define p,(0) = 1. The generating function for the sequence

P (0).py (1), (2)...is given by

P(x)=(I+x+x" +x" +..)1+x7 +x° +. )0+ +x +. )1 +x"+x +..)

1 1 1 1

Now because,
2 4

1l+x = “X R 1+X2:1-—Xz, 1+X3=1-X3, .....
I-x 1-x I-x
we have,

P,(x) =(1+x)1+x)A+x)A+x%)....
_l-x2 1-x* 1-x° 1-x*
Clex -2 1-x1-x*TT
1 1 1
Clex1-x01-x7TT
=P, (x)

From equality of generating functions,

py(n) =p,(n), for alln >0.

Example: Partition into odd summands but each such odd summands must occur an odd
number of times-or not at all. Here, for example, there is one such partition of integer 1,
namely 1, there are no partitions of 2, there two such partitions for integer 3, namely 3
and 1+1+1. one partition for integer 4 namely 3+1. The generating function for the
partitions described is given by

SO =rx+x"+7+ Y+ +x7+x7+ (2" +x +

) = ﬁ(l n ix(2k+l)(2i+l)]'
i=0

k=0
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Ferrer's graphHere we see a partition of 14 into summands, where 4 is the largest
summand, and a second partition into exactly four summands

The number of partitions of an integer » into m summands is equal to the number of
partitions where m is the largest summands.

14=4+3+3+2+1+1
=6+4+3+1

spuewwns Buiseaoap

-
<

Counting the compositions of a positive integer n using Generating Functions
Start with,

1
——=x+x A Fxt
I-x
Where , for example, the co-eff of x4 is 1, for one summand composition of 4 namely, 4.

To obtain number of compositions of n, we need the co-eff of X1 in

(rrx? 0+ ) = [(ﬁx)}z ) (1i)2

Here for instance we obtain x4 in (x+x2+x3+x4+....)2 from products (x!.x3), (x2.x2),

and (x3.x1). So co-eff of x4 in x2/(1-x)2 is 3, which is number of two summand
compositions of 4), 1+3, 2+2, 3+1.

Continuing with the three summand compositions we now examine

SR

(l—x

Once again we look at the ways x4 comes about — namely, from products (x1.x1.x2),

(x1.x2x1), and (x2.x1.x1). So here co-eff of x4 is 3, which accounts for the three
summand compositions 1+1+2, 1+2+1, and 2+1+1 (of 4).
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Finally the co-eff of x4 in below function is 1,

4 4

(x+x2 +x° +xt + )4 ) N - - for one four summand composition
(-x)]  (1-x)

1+1+1+1 (of 4).

These result tell us that the co-eff of x4 in

4 i
Z{( . )} is 1+3+3+1 =8 (:23), the number of compositions of 4. In fact this is
—-X

i=1
also the co-eff of x4 in the above equn.
Generalizing the situation we find that the number of compositions of a positive integer n

is the co-eff of x1 in the generating function

e =z{ﬁ} ......... N

But if we set y=x/(1-x), then it follows that

f(x)=i21yi=ygyi=y[l—1yj {(11)] l(lxj

1—x
() ==

1

:m = x4 (2x)+ (2x) + (2x) +..

=2%+2' X2+ 22X + 2% x4

So the number of integer compositions of a positive integer n is the co-eff of x! in f(x)

and this is 20-1 as derived in the equation in previous slide.
Let us examine the identity

n+l
[1 1X J =l+x+x*+x’+....+x"When x is replaced by 2 in this the result tells
-X

that for all n belonging to ZT,

n+l
14242242 +.....+2" =(1122 j=2"“ —1.Where do we use this?

Consider the special compositions of integers 6 and 7, that read same left to right as right
to left.

1+4+1 1+5+1
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2+2+2 2+3+2
1+1+2+1+1 1+1+3+1+1
3+3 3+1+3
1+2+2+1 1+2+1+2+1
2+1+1+2 2+1+1+1+2
1+1+1+1+1+1 1+1+1+1+1+1+1

These are palindromes for 6 and 7. We find that for 7 there are I1+(1+2+4) =

1+(1+21422) = 1+(23-1) = 23 palindromes. There is one palindrome with one summand,
7. There is also one palindrome where center summand is 5 and where we place one
composition of 1 on either side of this summand (palindrome 2).

For the center summand 3 we place one of the two compositions of 2 on the right and
then match it on the left, with same composition, in reverse order. (palindromes 3 and 4)
finally when the center summand is 1, we put a given composition of 3 on the right side f

this 1 and match on left side with same composition, in reverse order. There are 23-1 =4
compositions of 3 (palindromes 5,6,7,8).

The situation is same for palindromes of 6 except case where + sign appears as center. So
for n=6,

1)Center summand 6 1 palindrome

i1)Center summand 4 1(=21-1) palindrome
iii) Center summand 2 2(=22-1) palindrome
iv) + sign at Center 4(=23-1) palindrome

So there are 1+(1+21422) = 1+(23-1)=23 palindromes for 6.
Now we look at the general situation. For n=1 there is one palindrome. If n = 2k+1, for k

belonging to ZT, then there is one palindrome with center summand n. for 1 <t <k, there

are 2t-1 palindromes of n with center summand n-2t. Hence the total number of
palindromes of n is

1+(1422423+......+2k- 1y = 142k 1) = 2k = 2(n-1)/2
Now consider n even, say n = 2k for k belonging to Z+.
Here there is one palindrome with center summand n-2s (one palindrome for each of 2s-1
compositions of s). In addition there are 2k-1 palindromes where a + sign is at the center
(one palindrome for each of the 2k-1 compositions of k).In total, n has

1+(1+21422+423+ ..+ 2k-242k-1) = 14(2k.1) = 2k = 2n/2
Observe that forn e Z*, n has 21" */palindromes.

Partitions of IntegersPartition a positive integer # into positive summands and seeking
the number of such partitions, without regard to order. This number is denoted by p(n).
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For example, p(1)=1: 1

p(2)=2: 2=1+1

p(3)=3: 3=2+1=1+1+1

p(4)=5: 4=3+1=2+2=2+1+1=1+1+1+1

p(5)=T: 5=4+1=3+2=3+1+1=2+2+1=2+1+1+1

=1+1+1+1+1
We should like to obtain p(n) for a given n without having to list all the partitions. We
need a tool to keep track of the numbers of 1's, 2's, ..., n's that are used as summands for
keep track of 1's:1+x+x” +x° +

keep track of 2's:1+x” +x* +x° +

keep track of k's :1+x" +x™ + x* +
,, For example, p(10) is the coefficient of x'"in
f)=0+x+x*+ HYA+x+x*+ ) 1A+x"+ )
1 1 1 1 L
T-x (=) (-2 (=) -y
In general, P(x) = ﬁ -
i l—x
Example:Find the generating function for the number of ways an advertising agent can
purchase n minutes of air time if time slots for commercials come in blocks of 30, 60, or

120 seconds.
Let 30 seconds represent one time unit. Then the answer is the

generate the sequence p(0), p(1),

number of integer solutions to the equation a+2b+4c =2n
with 0 < a, b, c. The associated generating function is
f)=Q+x+x*+ )I+x*+x*+ HYA+x'+x*+ )=

1 1 1

" o1 and the coefficient of x*" is the answer.
—-x1-x"1-x

4

Example: Find the generating function for p4(n), the number of partitions of a positive

integer n into distinct summands.
Let us consider 11 partitions of 6:
DI1+1+1+1+1+1 D)1+1+1+1+2 3)1+1+1+3

4)1+1+4 5)1+142+42 6)1+5
7)142+3 8)2+2+2 9)2+4
10)3+3 11)6

Partitions 6,7,9 and 11 have distinct summands, so P4(6)=4
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For any k € Z", There are two posiibilities
either k is not used as a summand or it is.
This can be accounted for by the polynomial 1+ x*.

Consequently, the generating function is

o0

P(x)=(+x)1+x)(1+x*) =]]d+x")

i=1
foreachne Z", p,(n)is the coeff of x" in
(1+x)(1+x%)......(A1+x").and p,(0) =1.

when n = 6, the coeff of x° in (1+x)(1+x%)....... (1+x%)is 4.

Considering the partitions, we see that there are four
partitions of 6 into odd summands, namely1, 3,6 and 10

in the previous example. We also have p,(6) = 4.

let p,(n) denote the number of partitions of n into odd
summands, when n > 1. We define p,,(0) =1. The generating
function for the sequence p,(0),p,(1),p,(2),....1s given by
P(x)=(1+x+x>+x +..)0+x" +x"+..)1+x" +x""+..).
1 1 1 1

l+x”+x"+..)= . ) )
( ) l-x 1-x* 1-x° 1-x

Now because,
2 4

1-x 1—x -Xx

l+x =

we have,
P,(x)=(1+x)1+x>)A+x)1+x*)....
_l-x2 1-x* 1-x* 1-x°
l-x 1-x*"1-x""1-x*""
1 1 1
1-x 1-x*"1-x>
=P, (x)
From equality of generating functions,

py(n) =p,(n), for alln >0.

Example: Partition into odd summands but each such odd summands must occur an odd
umber of times-or not at all. Here, for example, there is one such partition of integer 1,
namely, there are no partitions of 2, there are two such partitions for integer 3, namely 3
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and 1+1+1. one partition for integer 4 namely 3+1. The generating function for the
partitions described is given by

) =+x+x+xX°+ YA+ +x"+x"+ HA+x" +x" +

) — ﬁ[l + ix(2k+l)(2i+l)}
k=0

i=0
Using Generating functions, we will also be able to deal with a sample space that is
discrete but not finite.

Example:Suppose that Brianna takes an examination until she passes it. Further, suppose
the probability that she passes the examinations on any given attempt is 0.8 and the result
of each attempt, after the first, is independent of any previous attempt. If we let P denote
“pass” and F denote “fail”, for any given attempt, then our sample space may be
expressed as

= {P, FP, FFP, FFFP,....}Where, for example, Pr(FFP) is the
probability tl-Z% she fails the exams is twice before she passes it, which is given by

(0.2)2(0.8). In"addition, the sum of probabilities for the outcomes in is Now suppose
we want to know the probability she passes the exam on an even numbered attempt. That
is we want Pr(A) where A is the event {FP, FFFP, ....}.

At this point we introduce the discrete random variable Y where Y counts the number of
attempts up to and including the one where she passes the exam. Then the probability
distribution for Y is g*=:»n by Pr(Y=y) = (0.2)¥- 1(0.8), y>1.

So Pr(A) can be dete.'=.ned as follows:

= (o.s;)i(o.z)zl'-1

- (0.8)[{0.2) +(0.2)° +(0.2) +...]
Pr(A) = > Pr(y = 2i) = 3(0.2)* (0.8) = (0.8)(0.2)[1+ (0.2)* +(0.2)° +(0.2)* +...

i=1 i=1

1
- (0.8)(0.2)m
_(08)(02) 1
09 6

Continuing with Y, now we’d like to find E(Y), the number of time she expects to take
exam before she passes it. To determine E(Y) we’ll start with the formula,
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1
— = l+t4tP 4t
1-t

taking the derivative both sides, we find that

2oL _df 1
-DI-t)~( 2)_(1—t)2 _dt|:1_t:|

=1+2t+3t> +4t° +....

where this series converges for |t| <l1.

Therefore,

E(Y)= iy.Pr(Y =y)= i“y(0.2)y"1 (0.8)

~ (0.8 y(0.2)""
= (0.8)[1+2(0.2) +3(0.2)> + +4(0.2)° +......]

08! _ 0.82
(1-0.2)>  (0.8)
1

=—=1.25
0.8

so she expects to take exam 1.25 times before she passes it.

Finally, to determine Var(Y), we find first E(Y?).
To do so miltiply by t the differentiated previous result.
then,

0 =t+2t2+3¢7 + 4t + ...

Differentiate both sides, now we get,
1-09°()—tQ)A-1)(=1) 1+t _i{ t }
(1-1* (1-1)° dt| (1-t)?
=12 +2°t 4377 +4° + ...

and this aslo converges for |t| <1.
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So now we have,

E(Y?) =3 y?Pr(Y = y)= Y y7(02)70.8)

— (0.8 y*(02)"
—(0.8)[12 +22 +(0.2)+3%(0.2)> +42(0.2)° + ...

1+0.2
_(0'8){(1-0.2)3}

12 15
(0.8)> 8

Consequently,
Var(Y) = E(Y?) - [E(Y)]’
_Is_ (z)
g8 4
~30-25
16

Exponential Generating Functions:

The generating functions we have dealt now are called ordinary Generating functions,
which arose in selection problems where order was irrelevant. Now let us turn to the
problems where order is relevant and crucial. We seek a tool. To find such a tool let us

consider the binomial theorem. For each n belongs to Zt,

onf = (e (e e

SO (l + x)n is the ordinary generating function for the sequence, When dealing with

(G-

this we wrote that C(n,r) represented the number of combinations of n objects taken r at a

time with 0 <r <n. Consequently (1+x)2 generated the sequence C(n,0), C(n,1), C(n,2),
C(n,3),....., C(n,n)
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Now forall0 <r<n,
]
cmn=—2—[Llpm,n,
rl(n-r)! 1!

where P(n, ) denotes the permutations of n objects taken

r at a time.So,

(1+x)" = C(n,0) + C(n,1)x + C(n,2)x % + C(n,3)x> +...+ C(n,n)x"
x2 x> x
=P(n,0) + P(n,1)x + P(n,2) BT + P(n,3)? +..... + P(n, n)—‘.
! ! n!
On the basis of this observation We have the following definition.
For a sequence a(y,31,85,83,84,85,.... of real numbers,
2 3 i
X X x© X
f(x) = agta;x+a, 7+ aj ?‘F e = igoai R
is called the exponential generating function for the given sequence.

Eg : The Maclaurian series expansion for e* is,

2 3 4 0 i
eX:1+X+X_+X—+X—+ ..... = ZaX_
23 4 i=0 ! 1!

so eX is the exponential generating function for the sequence1,1,1,1,1,.......

The function e is the ordinary generating function for the sequence,
1 111

sl 5 ) 5 ) Z ) 5 s
Example: In how many ways can four letters of ENGINE be arranged?

The following table shows list of possible selections of size 4 from the letters
E,N,G,IN,E, along with number of arrangements those 4 letters determine.

EENN 41/(2121) EGNN 41/21
EEGN 41/21 EINN 41/21
EEIN 41721 GINN 41/21
EEGI 41721 EIGN 41

Let us obtain the solution by using exponential gen. fun.

For the letter E we use [1+x+(x2/2!)], because there are 0, 1 or 2 E’s to arrange. The
number of distinct ways to arrange two E’s is 1 (co-eff of the term X2/2).F0r the letter N
we use [1+x+(x2/2!)], because There are 0, 1 or 2 N’s to arrange. The number of distinct

ways to arrange two N’s is 1 (co-eff of the term x2/2).The arrangements for each of the
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letters G and I are represented by (1+x).Consequently, the exponential generating
function is,

f(x)=
the eight ways in which the term x#/4! arises in the expansion of
1+ x + (x2/2!) [1 Fx+ (x2/2!)](1 +x)(1+x)
(x2 /2!)(x2 /2!)(1)(1)

1) From the product where x2 / 2!]is taken from first two factors

2
1+ x+ (xz/Z!)] (1+ x)2 the answer is co - eff of x4/4!C0nsider two of

f(x) =

and 1 is taken from last two factors.

(x2/21)(2/2)0) )
- ( 4 /2!2!) (1)1)
—(4y212). ( 4/4|)
And the co-eff of x4/4! is 41/(212!) which is the number of ways one can arrange four

letters E, E, N, N.
2) From the product

[x2/2)(1) () (x)

where (x2 / 2!is taken from first factor, 1is taken

Then

from second factor and x is taken from last two factors.
Here

A2D(D)(x)(x) = x4/21 = (41721)(x%/41)
So the co-eff of x4/4! is 41/2! Which is the number of ways the four letters E, E,

G, I can be arranged.In the complete expansion of the f(x), the term involving x4
{x4 xtoxt oxt Xt xt XA 4}
+ —t —+X

— — —+
2 2t 2t 2t 20 2t 2l

[ () ()2 G- (B)+(3)++] 5

Where the co-eff of x4/4! Is the answer (102 arrangements) produced by the eight results
in the table

and consequently x4/41, is

Example: Consider the Maclaurian series expansions of eX and e X
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2 3 4 2 3 4
X sl xt oty e X olox+ X
20 31 4 200 31 4

add these series together we get,

2 4
eXre X =2[1+X—+X4—'+....J

2!

X +e X x2 x4
— =+ —+—+
2 21 4
subtract the series we get
eX —e ¥ X x°
— =+ —+—+
2 3r s

These results help us in following examples
Example: A ship carries 48 flags, 12 each of the colors red, blue, white and black. 12 of
these flags are placed on a vertical pole in order to communicate a signal to other ships.

a) How many of these signals use an even number of blue flags and an odd number
of black flags?

Exponential generating function,

2
X2 X3 X2 X4 X3 X5
f(x)=1+x+—+—+..| |I+—+—+. | X+—+—+...
203! 20 4 3 s

considers all signal made up of n flags, n > 1. The last two factors restrict to even no.
of blue and odd no. of black flags.
Since,

R
_ G](ezx Xezx _2x ): %(64)( ) 1)

1 00(4x)i 1 00(4x)i
—Z[FOTI}—Z{FIT}

The co-eff of x12/12! in f(x) yields (1/4)(412)=411 signals made up of 12 flags
with even no. blue & odd no. black flags
b) How many of the signals have at least 3 white flags, or no white flags at all?
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Exponential generating function,

2
X2 X3 X3 X4 X2 X3
f(x)={1+x+—+—+. |1+ —+—+. | 1+ X+ —+—+...
20 3 34 203

2 2
e){eX —X—X—J(ex)z e?’){eX —x—X—J
2! 2!

_oAx 3% ijzez,x

BNV @_{ﬁjg ()

i=0 1! i=0 1!

Here the factor,

3 4 2
[1+X—+X—+...J=ex x—a
41

2!

restricts the signals to those that contain three or
more of the 12 white flags, or none at all.

The answer for the no. signals here is the co - eff of

x12 / 12!in f(x). As we consider each summand, we find

w0 (4% ) 12 12
) > @,herewehaveatemﬁzﬂz x|
i=0 1 12! 12!

12
so the co - eff of%is 412.

o i
i1) x[ > BL')] In this, in order to consider the term x12 / 12!,
i=0 1!

we need to consider the term
11 12 12
J B G| ()
1 1 12!

(X)12
12!

and here the co - eff of [ } is 12)(3)1 1.
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2\ o 1 12
1) X > @ , for this last summand, in order to get term X—,
2 Jli=0 1! 12!

we need to consider the term

[ o))

12
where the co - eff of ?m( j(l2)(1 1)(3)

consequently, the number of 12 flag signals with at least
3 white flags, or none at all, is
Result of 1+ Result of ii + Result of iii

412 +12(3”)+ (%)(12)(1 1)3)' =10,754,218.

Example: Company hires 11 new employees, each of whom is to be assigned to one of
the four subdivisions. Each subdivision will get at least one new employee. In how many
ways can these assignments be made?

Calling the subdivisions A, B, C and D, we can equivalently count the 11 letter sequences
in which there is at least one occurrence of each letters A, B, C, and D. The exponential
generating function for these arrangement is:

4
£(x)=(e* -1)
=e4X —4e3X +6e2X —4e* +1

2 3 4 1
fxX)=|x+—+—+—+... theansweristheco-effofwinf(x):

AT 43 o) g
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Example: Determine the sequences generated by following exponential generating

a)f (x) = 5¢°%.

(5x)"
soln:f(x)= 57X =5 Z
n=0 n!
this produces the sequence 5, 52 ,53 ,54

......

functions. b)f (x) = 7¢5% — 4¢3X

n
soln: f(x) = 7¢8% _4e3% =7 Z (SX) —4§ 6x)
n=0 n! n=0 n!

the sequence is 7(8)n - 4(3)n withn =0,1,2,3....
i.e3,44,412,3476,....
o)f(x) = 2eX +3x2
w N
soln: £(x) = 2eX +3x2 = 2[ s X—]+3x2
so the sequenceis 2,2,(2+3),2,2,2,....

d)f(x) = e3X —28x3 + 6x2 +9x
soln : f(x) = eX —28x° +6x2% +9x
w 2NN
LS 3 oex3 ex2 4+ 9x

SO sequence is 30,(31 +9),(32 +6) (33 —28)34,....
whichis 3,12,3,-1,91,....

Summation Operator
In this section we introduce a technique that helps us to go from ordinary generating
function for sequence a(), a,a2, a3, .... to generating function for the sequence a(), ap+ay,

agtaj+ap, agtajtazx+as, ....
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forf(x) =a, +a1x+a2x2 +a3x3 +...., consider, the function 02
(1-x)

(I

(1-x) (1-x)

:[ao +a1x+a2x2 +a3x3 +....][1+X+x2 +x3 +]
2 3
=a +(a0 +a1>x+(a0 +a1 +a2)x +(a0 +a1 +a2 +a3)x +....
f(x)
(1-x)

SO, generates the sequence ao,(a0 +all(a0 +a; +a2)....

Thus we refer to as summation operator.

1-x)

1 .
We know that T is the gen. fun. for the sequence1,1,1,...
-X

. 1
Apply the summation operator < we get,
-X
LI
1-x 1-x

! . ! = ! is the gen. fun. for the sequence 1,2,3.4....
I-x 1-x (1_X)2

is the gen. fun. for the sequence 1,1 +1,1+1+1,...

Consider the gen.fun. x + x2 , for the sequence 0,1,1,0,0,0...

Apply the summation operator, we get,

2
(x+x2)(1 ! j: X1+X which is gen. fun for 0,0 + 1,0+ 14 1,0 +1+1+1,...
—X —X

1.e the sequence 0,1,2,3,4,...
Apply again the summation operator, we get,
2 2
XX ! - XFX which is gen.fun. for the sequennce
I-x Nl1-x (1 _ X)2
0,0+1,0+1+2,0+1+2+2,.... 1e,0,1,3,5,....
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Apply again the summation function, we get,

X+X2( 1 j x+x2

= which is the gen. fun. for

(1-x)> =X (1-x)
the sequence 0,0+1,0+1+3,0+1+3+5,....
1.€0,1,4,9,.....

n
This suggests that forn > 1, > (2k-1) = n?
k=1

Example: Find a formula to express 02 + 12 +22 +32 +__ +n2 as a function of n.

We start with

g(x):L:1+x+x2+x3 +.... then,

- 1 _ dg(x)

2L 2
D3 () =y ==

3

=14+2x+3x“ +4x~ +...

SO is the gen. fun. for the sequence 0,1, 2, 3, 4,...

(1-x)?

Repeating this technique we find that,

Xi[x(dg(x)ﬂ = X(L+ X3) = x+22x2 +32X3 +42X4 +...
(I-x)

dx dx

SO L+X3) generates 02 ,12 ,22 ,32 -
(1-x)

Apply summation operator to this, we get,

x(I+x) 1 x(1+x)

(1-x)3 (=% (q-x)*

this genearates 02,02 +12,02 +12 +22,O2 +12 +22 +32,...
n

X(”’;) is 3

(1-x) 1=0

Hence co - eff of x™ in
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But this co - eff can also be calcualted as,

X(1—+X)=(X+x2kl—x)_4

(1-x)*

:@+X2{(jJ+ff}_g+[?}_xﬁ+“ﬂ

so the co - eff of x™ s,

(:J(_ el (:2](_ -2

o N TR R

n—1 n-2
n+2 n+2
= +
() ()
_ (h+2) N (n+1)
" 3(n-1! 3l(n-2)!

= %[(n + 2)(n + 1)(n)+ (n + IXH)(H - 1)]
:%@mwnw+n+@-m

B n(n + 1)(2n + 1)

- 6
Example: Find a formula for the sum of first n natural numbers using the generating
function for the sequence 0, 1, 3, 6, 10, 15, ....

We know that,

1 _® n+i—1 ;
(I-X)n_izo .

1 oo (142 ;
for n = 3, we have, 3= > X
(1 - X) 1=0\ 1

Thus the function genrates 1,3,6,10,15,...

(1-%)°3

Then

3 generates 0,1,3,6,10,15,....
(1-x)
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Now,

n n .
>k=co-effof x" in 3
k=0 (l-x)

=co-eff of x™ in (l-x)_

~co-eff of x™ 7 in (1- x)_3

:[ . ](— )= ) (Hﬂ_l)_lj(— D
n-1 n-1

:[n”j L)

n-1

Summaries (m objects, n containers)

Objects Containers  Some Number
Are Are Containers of
Distinct Distinct ~ May Be Empty Distributions
Yes Yes Yes nm
Yes Yes No n!S(m,n)
Yes No Yes S(m,1)+S(m,2)+...+S(m,n)
Yes No No S(m,n)
n+m-—1
No Yes Yes ( j
m
n+(m-n)—1
No Yes No
m-—n
No No Yes (1) p(m), for n=m
No No No (2) p(m,1)+p(m,2)+... +p(m,n), n<m
p(m,n)

p(m.n):number of partitions of m into exactly » summands
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UNIT 8

Sequences and Recurrence Relations

EXAmMPLE 8.1.2

Consider the following two sequences:

& 3,5,7.9,...
503927 8].....
We can find a formula for the nth term of sequences §; and S by observing the
pattern of the sequences.
S 41,8.29 1,294 1,2: 447, ...
W i L S

For S;,a, =2n+ 1 for » = 1, and for &, a, = 3" for # = 1. This type of for-

mula is called an explicit formula for the sequence, because using this formula
we can directly find any term of the sequence without using other terms of the
sequence. For example, a, =2-3+1=7.

ExAmPLE 8.1.3

Let § denote the sequence
I B ol T X PR

For this sequence, the explicit formula is not obvious. If we observe closely, how-
ever, we find that the pattern of the sequence is such that any term after the second
term is the sum of the preceding two terms. Now

drdterm=2=1+1 = lst term + Znd term

dthterm=3=1+42 = 2nd term + 3rd term

Athterm =5 =2+ 3 = 3rd term + 4th term

Gth term = 8 = 3 + 5 = 4th term + 5th term

7th tertm = 13 = 5 + 8 = hth term + 6th term

Hence, the sequence 5 can be defined by the equation

h=hatfhioe (8.1}
forall # = 3 and
h=1
: 8.2
A=1 S
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ExamPLE 8.1.4

Consider the function f : H' — Z* defined by

finy =1,

finy=nfin—1) forallr = 1.

Then
fiy=1=0!,
fili=1-f(0)=1=1,
A2y =2-f(1)=2.1 =2 =95
f(3)=3-f(2)=53-2.1=6=3),
and so on. Here fin) = nfiz — 1) for all n = | is the recurrence relation, and

Jith =1 is the initial condition for the function f. Notice that the function [ is

nothing but the factorial function, i.e., f{n) = r!lforall n = (.

Sequences and Recurrence Relations

Let us consider the function [ as given in (8.3). If we write a, = f(n), then

(8.3) translates into the following equation:

iy = 2,1+ o forallm =2,

That is, a, is defined in terms of a, | and a,_s. As remarked previously, such an
equation is called a recurrence relation. Moreover, (8.4) translates into a4, =5

and g = 7. These are called the initial conditions for the recurrence relation.

DEFINITION 8.1.5

A recurrence relation for asequence ay, ay, @, . . ., a,,. .. 1san equation that relates
a, to some of the terms ay, ay, @, .. ., @,_s, @,_) tor all integers n with » = k, where
k is a nonnegative integer. The initial conditions for the recurrence relation are
a set of values that explicitly define some of the members of @y, a1, @, ..., @-1.

The equation
iy = 2a,1+ t,—e  foralln =2,

as defined above, relates a, to a,_; and a,_,. Here k = 2. So this is a recurrence
relation with initial conditions 4, = Sand @ = 7.

=
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ExaAmPLE 8.1.9

Number of subsets of a finite set. Let 5, denote the number of subsets of a set
A with » elements, n = (. In Worked-Out Exercise Y (Chapter 2, page 144), we
proved that

5o =1,
Sy =28,_1, ifn=0
Hence, a recurrence relation for the sequence sy, 51, %, 83, 54, ... 18
Sp = 28,1, nx=1

and an initial condition is 5, = 1.

ExXAmMPLE 8.1.10

Compound Interest. Sam received ayearly bonus and deposited $10,000 in a local
bank vielding 7% interest compounded annually. Sam wants to know the total
amount accumulated after n vears. Let 4, denote the total amount accumulated
after » vears. Let us determine a recurrence relation and initial conditions for the
sequence Ap, A, A, As, L

The amount accumulated after one vear is the initial amount plus the interest
on the initial amount. Now 4, | is the amount accumulated after n — 1 vears.
This implies that the amount at the beginning of nth vear is A, _;. It follows that
the total amount accumulated after n years is the amount at the beginning of the
nth year plus the interest on this amount. Because the intevest rate is 7%, the
interest earned during the nth vear is (L0714, 1. Hence,

Apg = A1 + 100714,
1.O7A. 1, nm=1,
Ag = 10000,

*  Tower of Hanoi

- In the nineteenth century, a game called the Tower of Hanoi became popular in
Europe. This game represents work that is under way in the temple of Brahma.

- There are three pegs, with one peg containing 64 golden disks. Each golden disk
is slightly smaller than the disk below it.

- The task is to move all 64 disks from the first peg to the third peg.
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FIGURE 8.1 Tower of Hanoi
problem with three disks

* The rules for moving the disks are as follows:
1. Only one disk can be moved at a time.
2. The removed disk must be placed on one of the pegs.
3. A larger disk cannot be placed on top of a smaller disk.

* The objective is to determine the minimum number of moves required to transfer
the disks from the first peg to the third peg.

» First consider the case in which the first peg contains only one disk.
— The disk can be moved directly from peg 1 to peg 3.

* Consider the case in which the first peg contains two disks.
— First move the first disk from peg 1 to peg 2.
— Then move the second disk from peg 1 to peg 3.
— Finally, move the first disk from peg 2 to peg 3.

» Consider the case in which the first peg contains three disks and then generalize
this to the case of 64 disks (in fact, to an arbitrary number of disks).

— Suppose that peg 1 contains three disks. To move disk number 3 to peg 3,
the top two disks must first be moved to peg 2. Disk number 3 can then be
moved from peg 1 to peg 3. To move the top two disks from peg 2 to peg
3, use the same strategy as before. This time use peg 1 as the intermediate
peg.

— Figure 8.2 shows a solution to the Tower of Hanoi problem with three
disks.
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* Generalize this problem to the case of 64 disks. To begin, the first peg contains all
64 disks. Disk number 64 cannot be moved from peg 1 to peg 3 unless the top 63
disks are on the second peg. So first move the top 63 disks from peg 1 to peg 2,
and then move disk number 64 from peg 1 to peg 3. Now the top 63 disks are all
on peg 2.

* To move disk number 63 from peg 2 to peg 3, first move the top 62 disks from
peg 2 to peg 1, and then move disk number 63 from peg 2 to peg 3. To move the
remaining 62 disks, follow a similar procedure.

* In general, let peg 1 contain n > 1 disks.
1. Move the top n — 1 disks from peg 1 to peg 2 using peg 3 as the
intermediate peg.
2. Move disk number # from peg 1 to peg 3.
3. Move the top n — 1 disks from peg 2 to peg 3 using peg 1

Let ¢, denote the number of moves required to move » disks, n = (), from peg
| to peg 3. Step (1) requires us to move the top » — | disks from peg 1 to peg 2,
which requires ¢,_; moves. Step (2) requires us to move the nth disk from peg 1
to peg 3, which requires | move. Step (3) requires us to move nz — | disks from
peg 2 to peg 3, which requires ¢, moves. Thus, it follows that

=g -b1, dnsl (8.5)
and
g =1. (8.6)

Now (8.5) 1s a recurrence relation for the sequence {¢, ]~ ; with the initial condi-
tion given by (8.6).

Suppose a recurrence relation for a sequence ay, 4y, @, ..., a,,..., s given. By a
solution of the recurrence velation we mean to obtain an explicit formula for a,, i.e.,
to find an expression for a, that does not involve any other a;.
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Let § be the sequence {a, )}, where
a, = ia,_1 —ba,_» forall n > 2. (H.H)

Because a, is defined in terms of the preceding terms «,_; and a,_», Equation
(8.8) 1s a recwrrence relation.

Let us show that a, =5 =5+ 0" n is a solution of Equation (8.8). Here a4y =
S,a1 =5, m =D5,...,a, =5, and so on. Let us evaluate the right side of Equation

(B.8), i.e.,
Tai1 —0ay_o=7-5—-6-5=35-830=hH=a,.

Hence, a, = 5, n = () 1s a solution of the recurrence relation (8.8).

Now let a, = 6". Here ay=6"=1, g =6'=6, m=6"=36,...,a, 9 =
6"2 @, =6"1 g, =6", and so on. Let us evaluate the right side of Equation
(8.8), using the terms of this sequence. We have

7. ﬁ]r—l — .62

?rfi:l_l_ll - ﬁlri_ll_z

s ﬁJr—] e ﬁ.lr—|
AT Ty
=6 [

— R{"

= &y.

Therefore, g, = 6", n = (15 also a solution of the recurrence relation (8.8).
Note that the expression g, = 2%, # = {) is not a solution of Equation (8.8).

Linear Homogenous Recurrence Relations

Let ay, ay, @, ..., a,,... be a sequence of numbers. A linear homogeneous recur-
rence relation of order k& with constant coefficients is a recurrence relation of the
form

Gy = O1@p_1+ @y_2+ 3n_5 + -~ + k@u_k, (B.51)

where ¢, # 0 and ¢, &, 63, ..., and ¢, are constants.
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Linear Homogenous Recurrence Relations

Consider the following recurrence relations.

(1) = Bap_1 + e
(1) a,=3%a,.1+5H
{iil) a, =34, 1+ 2, 0" ,_5
(V) @ = 3an_1 + aps + 2,3
v) = 3y + ne_s

Recurrence relations (i), (ii), (iii), and (iv) are recurrence relations with con-
stant coefficients. Recurrence relation (v), a4, = 3a,-1 + na,—2, 15 not a relation
with constant coefficients. Notice that (i) is a linear homogeneous recurrence

Linear Homogenous Recurrence Relations

A sequence s, §1, §2, ..., 5, ... is said to satisfy a linear homogeneous recurrence
relation

Ay = 01,1+ Gy _e + @y + -+ g 7 0 (8.32)

of order k with constant coefficients it 5, = a15,_1 + ms_e + 555 + - + CeSn_p.

It a sequence 5, 51, §2,. .., §,,... satisfies a linear homogeneous recurrence rela-

tion, then the sequence s, 5, %,. .., 5,... is also called a solution of that recur-
rence relation.

Consider the recurrence relation a, = 3a,_1. This is a linear homogeneous recur-
rence relation of order 1. Let { be a nonzero number and suppose a, = " for
all n = (0. Then a, = 3a,_; implies that " = 3¢t" 1. Therefore, t = 3. Thus, we
find that a, = 3". Hence, the sequence 1,3, 82,85 . 8" . is a solution of the
recurrence relation a, = 3a,_1.

Theorem 8.2.7: Let
G = 00 T g s, w3+l n=1 (H8.34)

be a linear homogeneous recurrence relation with constant coetficients.
Let ¢ be a nonzero real number. Then the sequence ("] satisfies the above
recurrence relation it and only if -

£ — et —o=10 (8.35)
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Leta, = oa, 1+ 2, _s, ix 7 0, n = 1 be a linear homogeneous recurrence rela-
tion with constant coefficients. The equation

2

==t — =1

is called the characteristic equation of the recurrence relation.
Theorem 8.2.9; Let
o = €1 fn—1+ t2fln_s, N =1 (RB.A3T7)

be a linear homogeneous recurrence relation of order 2, where g and e
are constants and & # ()

(i) If the sequences {s,} and {#,] satisfy (8.37), then for any constants b
and d, the sequence {bs, + dp, | satishies (8.57).

(i) Let r be a root of the characteristic equation
2 — gt — =20 (8.38)
of (8.37). Then the sequence {r"} is a solution of {3.37).

Theorem 8.2.10: Suppose that a sequence {d,} is a solution of the
recurrence relation (8.37). If n and » are the distinct roots of the
characteristic equation (8.38), then there exist constants b and o, which

Curullary 8.2.11. Suppose that

ay = d, ay = d

are the initial conditions for the recurrence relation (8.37), where o, and
d) are constants. Further suppose that 1 and » are the roots of (8.58). If
n # s, then there exist constants b and «, which are to be determined by
initial conditions, such that the solution of the recurrence relation (8.37) is

=0 L, A=01
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ExAmPLE 8.2.12

In this example, we solve the following linear homogeneous recurrence relation:

iy = Tet,—1 — 10a, _o (8.41)
with initial conditions
day = 1
a; = 8,

The characteristic equation of the given recurrence relation is:
£ —7t+10=0.
Next, we find the roots of this equation. Now,
= Tt+10=(t—=5)(1—2)
and so
(t = DB)(t—2)=1.

This implies that the roots of the characteristic equation are { = 5, and ¢ = 2. The
roots are distinct. By Theorem 8.2.10), there exist constants ¢ and ¢, which are to
be determined from initial conditions, such that

i, = 00" + 2%, n=0.

We substitute n = () and n = 1, respectively, to obtain

ay = 1 T G,
= Hhe + 2.

Using the initial conditions, we get

£+ e =1,
hg + 2. =8
Solving these equations for ¢ and @, we get ¢ = 2 and & = —1. Hence,

i, =2-5"=2"  n=I.

"

Hence, the sequence {2 - 5" — 2"} is the solution.
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Theorem 8.2.13: Suppose that a sequence {s,} is a solution of the
recurrence relation (B.37). It n and » are the roots of the characteristic
equation (8.58) such that 11 = % = r, then there exist constants b and
¢, which are to be determined, such that the solution of the recurrence

relation (8.37) is

Ssp = 0" +dnr®, n=0,1,....

Corollary 8.2.14: Suppose that
iy = iy, a1 = dh

are the initial conditions for the recurrence relation (8.37), where dy and
d) are constants. Further suppose that r and % are the roots of (8.38)
such that 1 = n = r. Then there exist constants  and d, which are to be
determined from initial conditions, such that the solution of the recurrence
relation (B.37) is

Gn = " +dur®, u=0,1,....

In this example, we solve the following linear homogeneous recurrence relation:

i, =4a, 1 — 4a, o
with initial conditions
fan = 4
ap = 12,

The characteristic equation of this recurrence relation is the quadratic equa-

tion
" —4t+4=0.
We find the roots of this equation. Now,
-4t +4=(t—2)it—2)

and so

(=2t =2 =1
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This implies that the roots of the characteristic equation are { = 2, and { = 2. The
roots are not distinct. Therefore, by Theorem 8.2.13, there exist constants ¢ and
¢z, which are to be determined from initial conditions, such that

e = 12" + r2™, nm=01,....
We substitute n = () and r» = 1, respectively, to obtain

iy = 1]
i = 20 + 2.
Using the initial conditions, we get
= 1,
20 + 20, = 12.

Solving these equations for ¢ and @, we get ¢ = 4 and & = 2. Hence,
@ =4-2"+2.0.2"=2.2" 4 2" = (24 0)2"H = (n+ 2027, w=0.
Thus, we find that the sequence {in + 212°+1} is the solution.
Theorem 8.2.16: Let
Ay = C10p—1 + 23 + GGln—3 + - + kg, €k 70 (8.42)

be a linear homogeneous recurrence relation with constant coefficients.
Let ¢ be a nonzero real number. Then the sequence {t"} is a solution of the
above recurrence relation it and only it

n—2

n—1

" gt — et — " — . — g™ =0,

Let a, = 01@u—1 + Glu—2 + 5853 ++++ + Chelu_p, cx 7 () be a linear homogeneous
recurrence relation with constant coefficients. The equation

k-3

e‘""—.r'1.!j"_| = r.';g.tk_z—.r:-;t — = =1

is called the characteristic equation of this linear homogeneous recurrence rela-
tiomn.
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To obtain the characteristic equation of the recurrence relation @, = ¢ja,_ +
-2+ (-3 T -+ Gelui, ¢ 7 (), substitute a, =", # (), to get

I!” = I|.,||!|'|'—| _|_ ;.Eiw—}i _|_ Ir.I:-aI!”_:i _|_ kit _|_ I"I*.I!!H_jl..

Thus,
("= qt" !+ ot 2 4 gt e gt
N LI el O PR AL 1o |
= (ARt 2 S ) =0,
Because ¢ # (0, we have, ¢ — ¢t — ot*2 — gt — ... — ¢, =0, which is the

characteristic equation.

Theorem 8.2.19: Let

Gp = €l 8p_1 + 8Gp_92+ @35+ -+ GGn_i (®.44)

be a linear homogeneous recunrence relation of order k, where ¢, & 0 and
€1, f2, €4, .. ., and ¢ are constants. Let

e L o L rg;:‘.*_ﬁ — e — =10
be the characteristic equation of (8.44).

(i)  If the sequences {s5,}7° , and {f,,}7° , are solutions of (8.44), then for
o

any constants b and «, the sequence {fs, + dp,} =
(8.44).
(i) I r is a root of the characteristic equation, then the sequence 1, r,

¥2. . .r". . isasolution of (8.44).

15 a solution of

(i) I n, ., . ... %are distinct roots of the characteristic equations, then
there exist constants f, &, b, ..., b, which are to be determined
from initial conditions, such that a solution of (8.44) is given by

g = b + bary + Bsrg +--- + Iary,
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(iv) If r 15 a root, of multiplicity m, of the characteristic equation, then

m—1

o .
Gp = T, g =7, G =n7",...,8and g, = = r" are solutions of

(8.44).
(v)  Suppose that

ag =g, a1 =dy,..., a8, = dp_1

are the initial conditions for the recurrence relation (8.44), where
g, 1, ..., and d,_1 are constants. If n, », ..., and » are ¢ distinct
roots of the characteristic equation with multiplicities my, ma, ..., m
and m; + mz + - - - + my = k, then there exist constants ¢;, which are
to be determined from the inital conditions, such that the solution
of the recurrence relation (8.44) is

iy, = (g + e+ -+ tou jEM"'_1]'-"1”

i A S el A B T R fIm_,'?imz_l :I?.;
et U S T T8

A linear nnnhﬂmﬂgeneous recurrence relation with constants coetficients s a re-
currence relation of the form

Uy + a1+ + i = f(0), (8.55)

where ¢,7 =1,2,...,k, are constants, i # 0, and f(%) is a nonzero real-valued
function.

It f(n) =0, then (8.55) isa linear homogeneous equation (which we discussed
in the previous section). There is no known general method for solving nonho-
mogeneous linear recwrrence equations. However, we can develop a method for
solving the special case

08+ 081+ T Gy = Bplm), (8.56)

where f 15 a constant and fi( %) is a polynomial in n.
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Linear Nonhomogenous Recurrence Relations

Consider the recurrence
i, + 5, + Ba,_o = 5",

Thisis a nonhomogeneous recurrence relation of the form (8.56). Here k = 2,
h=3, and pin) = L.

Consider the recurrence
1 g iy - "
T, +ha, | +b6a,_o=3"n"+6Gu+5).

Thisis a nonhomogeneous recurrence relation of the form (8.56). Here k = 2,
b=23 and pin) = w4 6+ 5.

Linear Nonhomogenous Recurrence Relations

Theorem 8.3.5; Let

R e et o o S S (8.62)

be a nonhomogeneous recurrence relation, where ¢,i=1,2,..., k, are
constants, ¢ # 0, and f(#} is a nonzero realvalued function. Suppose
{ra} s a particular solution of (8.62). Then {u,} is a solution of (8.62) if
and only if w, = r, + 5, for all », and {s,} is a solution of the associated
homogeneous part, a, + aa,_1+ -+ + Gy = 1.
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Theorem 8.3.6: Let
By — B = 0w, 12>1 (B.67)
be a nonhomogeneous linear recurrence relation, with the initial condition
Ay = ¥, (H.68)

where ¢, 6, ¥, and & are constants, and / and zx are nonrero. This

nonhomogeneous linear recurrence relation can be transformed into the
tollowing linear homogeneous recurrence relation:

iy —ih+dla,1 +bda, o =0, n=2
with the initial conditions a4, = &, and a; = ds, + .

Moreover,

(i) if b 7= d, then there exists a constant o, which is to be determined
from the initial condition. such that

b
" == d]l’_‘_ ']'ﬂ"
2 ® (:‘5— rt) :

(iil) it & = d, then there exists a constant g, which to be is determined
trom the initial condition, such that

Iy = ob" + unb".

In this example, we use Theorem 8.3.6 to solve the recurrence relation
a, —4a, 1 =8, =m=1,
with the initial condition
iy = 1.
This is a recurrence relation of the form

ity — elen_1 = h"wu,
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Let {n,} be a solution of (8.83).
(i)  Suppose b # d. Then r, is of the form
o = " + cb” + conh”,

where ¢, ¢, and & are some constants.

(i)  Suppose b = d. Then {r} is of the form
Y, = qh" + qnb” + b,

where g, ¢1, and & are some constants,
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Consider the recurrence relation

a, —3a,_1=2"4n+3), n=1 (8.04)
with initial conditions
day = (),
a; = 14.

This 1s a recurrence relation of the form
i, —da, 1 = " (un + v).

Here d =3, =2, u=4,and v = 3.
We can solve this recurrence by using the technique of Theorem 8.3.1() and
obtaining

iy = 03" + 2" + wn?”,

where @, 1, and @ are constants, which are to be determined from the initial
conditions.

Consider the recurrence relation

a,— 3, 1=2"4n+3), n=1 (8.94)
with initial conditions
ay = (),
a; = 14.

This 15 a recurrence relation of the form
a, — da,_1 = h"(un + v).

Here d=3,=2,u=4, and v = 3.
We can solve this recurrence by using the technique of Theorem 8.3.10 and
obtaining

an = 03" + 02" + en2",

where g, 1, and @ are constants, which are to be determined from the initial —E

conditions.
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Put n = 2 in (8.92} to get
a—3m=2°(4-2+3) = 44.
Because ) = 14, we get
m =3- 14 + 44 = K6,
Thus,

Iy = i+ =1
Fi:]‘.‘-'}+lr'|‘2+l".'2'2=]‘4
@=a-3+a-+w-2-22=86

]

This implies that
i+ o =10
3 +20+20 =14
9o+ 4e1 + 8w = B

We solve these equations tor ¢, ¢, and & to obtain ¢ = 30, ¢ = =30, and ¢ = —8.
Thus, we find that

a, = 30(3%) — 3002") — n2",  n =0, (R.95)

Theorem 8.3.13; Let

@y + di a1+ -+ + dian_p = b"pin) (8.96)

be a nonhomogeneous linear recurrence relation, where fin) is a
polynomial of degree m. Then from this nonhomogeneous linear
recurrence relation we can obtain a linear homogeneous recurrence that
has following characteristic equation:

(e i B =0, (8.97)

Moreover, a solution of (8.96) is also a solution of the linear homogeneous
recurrence whose characteristic equation is given by (8.87).
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Linear Recurrences

There is a class of recurrence relations which can be solved analytically in general.
These are called linear recurrences and include the Fibonacci recurrence.
Begin by showing how to solve Fibonacci:

Solving Fibonacci

Recipe solution has 3 basic steps:
1) Assume solution of the form an =rn
2) Find all possible »’s that seem to make this work. Call thesel »1 and 2. Modify
assumed solution to general solution an = Ar1n +Br2n where A, B are constants.
3) Use initial conditions to find 4,B and obtain specific solution.

Solving Fibonacci

1) Assume exponential solution of the form an=rn :

Plug this into a, = a,.1 + a, :

r n_ r n-1 + 7 n-

Notice that all three terms have a common " factor, so divide this out:
PP =" Y e = 4 ]

2

This equation is called the characteristic equation of the recurrence relation.

2) Find all possible r’s that solve characteristic
ri=r +1
Call these r; and r 2,1 General solution is
a, = Ar\" +Br," where A,B are constants.
Quadratic formula2 gives:
r=(1£5)2
So r1 = (1+V5)/2, r, = (1-V5)/2
General solution:
an=A [(1V5)2]" +B [(1-V5)/2]"
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Solving Fibonacci

*
Use initial conditions ap= 0, a; = 1 to find 4,B and obtain specific solution.

0=ao=A [(1+V5)2]°+B [(1-V5)/2]’= 4 +B

1=a; =4 [(1+5)/2]' +B [(1-V5)/2]' = A(1+\5)/2 +B (1-V5)/2
= (A+B )2 + (4-B W5/2

First equation give B = -A. Plug into 2"%:

1=0+24V5/2 so 4 =15, B=-15

Final answer:

(CHECK IT!) | (1+£)n_ | {l_ﬁJH

a =
oS50 2 Jslo2

Linear Recurrences with Constant Coefficients

Previous method generalizes to solving “linear recurrence relations with constant
coefficients "

DEF: A recurrence relation is said to be linear if an i1s a linear combination of the
previous terms plus a function of n. I.e. no squares, cubes or other complicated function
of the previous ai can occur. If in addition all the coefficients are constants then the
recurrence relation is said to have constant coefficients.

Linear Recurrences with Constant Coefficients

Q: Which of the following are linear with constant coefficients?
1. a,=2a,,

_ n-3
2. a,=2a,1+2"7-a,3
2
3. a,= a,

4. Partition function:
n-1

P, =3 p-Cln—Ln-1-i)

i=0
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Linear Recurrences with Constant Coefficients

1. a,=2a,;: YES
2. a,=2a,,+2"%-a,5: YES

2 . . ) .
3. a,= a,1": NO. Squaring is not a linear operation. Similarly a, = a,.1a,, and a, =
cos(ay,.») are non-linear.

n—1
4. Partition function: D, = Z D C(n—-1,n—1-17) NO.
i=0
This is linear, but coefficients are not constant as C (n -1, n -1-i ) is a non-constant
function of n.

Homogeneous Linear Recurrences

To solve such recurrences we must first know how to solve an easier type of recurrence
relation:

DEF: A linear recurrence relation is said to be homogeneous if it is a linear combination
of the previous terms of the recurrence without an additional function of ».

Q: Which of the following are homogeneous?
1. a,=2a,.
2. ap=2ay1* 23— a3 -l
3. Partition function: p, = z D C(n —1,n-1- i)
i=0

Linear Recurrences with Constant Coefficients

A:
1. a,=2a,: YES
2. a,=2a,1+2"-a,3 No. There’s an extra term f(n) =2""
3. Partition function:

n—l1
P, =2 p-Cln=1,n-1-i)

YES. No terms appear not involviﬁt(:gothe previous p;
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Homogeneous Linear Recurrences with Const. Coeff.’s

The 3-step process used for the Fibonacci recurrence works well for general
homogeneous linear recurrence relations with constant coefficients. There are a few
instances where some modification is necessary.

Homogeneous — Complications

1) Repeating roots in characteristic equation. Repeating roots imply that don’t learn
anything new from second root, so may not have enough information to solve
formula with given initial conditions. We’ll see how to deal with this on next
slide.

2) Non-real number roots in characteristic equation. If the sequence has periodic
behavior, may get complex roots (for example a, = -a,.,)'. We won’t worry about
this case (in principle, same method works as before, except use complex
arithmetic).

Complication: Repeating Roots

EG: Solve a,=2a,.1-a,2, ap=1, a; =2
Find characteristic equation by plugging in a,=r":
rr-2r+1=0
Since 72 - 2r +1 = (r -1)* the root » = 1 repeats.
If we tried to solve by using general solution
a,=Ar)"+Bry" = A1"+B1" = A+B
which forces a, to be a constant function (=2 <).
SOLUTION: Multiply second solution by n so general solution looks like:
an,= Ar{"+Bnr{"

Complication: Repeating Roots

Solve a, =2a,.1-a,2, ap=1, a; =2
General solution: a,= A1"+Bnl1" = A+Bn

Plug into initial conditions

1 =ao=A+B-0-1°= 4

2=ay=A1"+B-1:1'= 4+B

Plugging first equation 4 = 1 into second: 2 = 1+B implies B = 1.
Final answer: a,,= 1+n
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The Nonhomogeneous Case

Consider the Tower of Hanoi recurrence (see Rosen p. 311-313)
a,=2a,.1+1.
Could solve using telescoping. Instead let’s solve it methodically. Rewrite:
ay - 2a,,-1= 1

1) Solve with the RHS set to 0, i.e. solve the homogeneous case.

2) Add a particular solution to get general solution. I.e. use rule:

General _ General + Particular
Nonhomogeneous homogeneous Nonhomogeneous

The Nonhomogeneous Case

a, - 2an_1 =1
1) Solve with the RHS set to 0, i.e. solve
a,-2a,1=0
Characteristic equation: » - 2= 0
so unique root is ¥ = 2. General solution to homogeneous equation is
a,=A2"

The Nonhomogeneous Case

2) Add a particular solution to get general solution for a, - 2a,.,= 1.

Use rule:
General _ General Particular
Nonhomogeneous | |homogeneous | Nonhomogeneous

There are little tricks for guessing particular nonhomogeneous solutions. For example,
when the RHS is constant, the guess should also be a constant.'

So guess a particular solution of the form b,=C.

Plug into the original recursion:

1=b,—-2b,.,=C—-2C=-C. Therefore C=-1.

General solution: a,= A-2"-1.
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The Nonhomogeneous Case

Finally, use initial conditions to get closed solution. In the case of the Towers of Hanoi
recursion, initial condition is:

ay = 1

Using general solution an = A4-2" -1 we get:

l=a;=42"-1=24-1.

Therefore, 2 =24, so A= 1.

Final answer: a, =2" -1

More Complicated

EG: Find the general solution to recurrence from the bit strings example:

ap = 2an—l + 2n-3 - ap3
1) Rewrite as a,, - 2a,.1 + a,3= 2"3 and solve homogeneous part:
Characteristic equation: > - 2r +1 = 0.

Guess root » = £1 as integer roots divide.

1 1 I L R B 1N 4 - _a

More Complicated

r3 - 2r+1 =@ -1)(r 2+ -1).
Quadratic formula on r > +r -1:
r=(-1£5)2
Sor =1, r=(-1+V5)/2, 3= (-1-5)2
General homogeneous solution:
ay=A+ B [(-14+V5)/2]" +C [(-1-V5)/2]"
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More Complicated

2) Nonhomogeneous particular solution to a, - 2a,.; + a,3= 23
Guess the form b,=k 2". Plug guess in:

k2" 2k 2"+ k2R =2
Simplifies to: k£ =1.
So particular solution is b, = 2"

General General Particular
Nonhomogeneous homogeneous | Nonhomogeneous

Il
+

Final answer:
a,=A + B [(-1+N5)/2]"+ C [(-1-N5)/2]" + 2"
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