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                   UNIT 1 

INTRODUCTION 

  
This topic is about a branch of discrete mathematics called graph theory. Discrete mathematics – 

the study of discrete structure (usually finite collections) and their properties include combinatorics (the 

study of combination and enumeration of objects) algorithms for computing properties of collections of 

objects, and graph theory (the study of objects and their relations). 

Many problem in discrete mathematics can be stated and solved using graph theory therefore 

graph theory is considered by many to be one of the most important and vibrant fields within discrete 

mathematics.  

Many problem in discrete mathematics can be stated and solved using graph theory therefore graph 

theory is considered by many to be one of the most important and vibrant fields within discrete 

mathematics.  

DISCOVERY 

It is no coincidence that graph theory has been independently discovered many times, since it 

may quite properly be regarded as an area of applied mathematics .Indeed the earliest recorded mention 

of the subject occurs in the works of Euler, and although the original problem he was considering might 

be regarded as a some what frivolous puzzle, it did arise from the physical world.  

Kirchhoff‘s investigations of electric network led to his development of the basic concepts and 

theorems concerning trees in graphs. While Cayley considered trees arising from the enumeration of 

organic chemical isomer‘s. Another puzzle approach to graphs was proposed by Hamilton. After this, 

the celebrated four color conjecture came into prominence and has been notorious ever since. In the 

present century, there have already been a great many rediscoveries of graph theory which we can only 

mention most briefly in this chronological account. 

WHY STUDY GRAPH? 

The best way to illustrate the utility of graphs is via a ―cook‘s tour‖ of several simple problem 

that can be stated and solved via graph theory. Graph theory has many practical applications in various 

disciplines including, to name a few, biology, computer science, economics, engineering, informatics, 

linguistics, mathematics, medicine, and social science, (As will become evident after reading this 

chapter) graphs are excellent modeling tools, we now look at several classic problems. 

We begin with the bridges of Konigsberg. This problem has a historical significance, as it was 

the first problem to be stated and then solved using what is now known as graph theory. Leonard euler 

fathered graph theory in 1973 when his general solution to such problems was published euler not only 

solved this particular problem but more importantly introduced the terminology for graph theory. 

 

 

1. THE  KONIGSBERG  BRIDGE  PROBLEM 

Euler (1707-- 1782) became the father of graph theory as well as topology when in 1736 he 

settled a famous unsolved problem of his day called the Konigsberg bridge problem. The city of 
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Konigsberg was located on the Pregel river in Prussia, the city occupied two island plus areas on both 

banks. These region were linked by seven bridges as shown in fig(1.1).  

The problem was to begin at any of the four land areas, walk across each bridge exactly once and 

return to the starting point one can easily try to solve this problem empirically but all attempts must be 

unsuccessful, for the tremendous contribution of Euler in this case was negative. 

In proving that the problem is unsolvable, Euler replaced each land area by a point and each 

bridge by a line joining the corresponding points these by producing a ―graph‖ this graph is shown in 

fig(1.2) where the points are labeled to correspond to the four land areas of fig(1.1) showing that the 

problem is unsolvable is equivalent to showing that the graph of fig(1.2) cannot be traversed in a certain 

way. 

In proving that the problem is unsolvable, Euler replaced each land area by a point and each bridge by a 

line joining the corresponding points these by producing a ―graph‖ this graph is shown in fig(1.2) where 

the points are labeled to correspond to the four land areas of fig(1.1) showing that the problem is 

unsolvable is equivalent to showing that the graph of fig(1.2) cannot be traversed in a certain way. 

 
Figure1.1: A park in Konigsberg 1736 

 
 

 

 

 

 

 

Figure1.2: The Graph of the Konigsberg  bridge problem 

Rather than treating this specific situation, Euler generalized the problem and developed a 

criterion for a given graph to be so traversable; namely that it is connected and every point is incident 

with an even number of lines. While the graph in fig(1.2) is connected, not every point incident with an 

even number of lines. 

 

2. ELECTRIC  NETWORKS 

Kirchhoffs developed the theory of trees in 1847 in order to solve the system of simultaneous 

linear equations linear equations which gives the current in each branch and around each circuit of an 

electric network..  

Although a physicist he thought like a mathematician when he abstracted an electric network 

with its resistances, condensers, inductances, etc, and replaced it by its corresponding combinatorial 
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H1 H2

  
H3 

W E G 

structure consisting only of points and lines without any indication of the type of electrical element 

represented by individual lines. Thus, in effect, Kirchhoff replaced each electrical network by its 

underlying graph and showed that it is not necessary to consider every cycle in the graph of an electric 

network separating in order to solve the system of equation. 

Instead, he pointed out by a simple but powerful construction, which has since               became 

std procedure, that the independent cycles of a graph determined by any of its ―spanning trees‖ will 

suffice. A contrived electrical network N, its underlying graph G, and a spanning tree T are shown in 

fig(1.3) 

 
N: 

 

 

 

 

Fig (1.3)- A network N, its underlying graph G, and a spanning tree T 

 

 G: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. UTILITIES  PROBLEM 

These are three houses fig(1.4) H1, H2, and H3, each to be connected to each of the three utilities 

water(w), gas(G), and electricity(E)- by means of conduits, is it possible to make such connection 

without any  crossovers of the conduits?  

 

 

 

 

 

 

 

 

Fig(1.4)- three – utilities problem 

Fig(1.4) shows how this problem can be represented by a graph – the conduits are shown as edges while 

the houses and utility supply centers are vertices 
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4. SEATING  PROBLEM 

Nine members of a new club meet each day for lunch at a round table they decide to sit such that 

every members has different neighbors at each lunch  

 

 

 

 

 

 

Fig(1.5) – Arrangements at a dinner table 

How many days can this arrangement lost? 

This situation can be represented by a graph with nine vertices such that each vertex represent a 

member, and an edge joining two vertices represents the relationship of sitting next to each other. 

Fig(1.5) shows two possible seating arrangement – these are 1 2 3 4 5 6 7 8 9 1 (solid lines), and 1 3 5 2 

7 4 9 6 8 1 (dashed lines) it can be shown by graph – theoretic considerations that there are only two 

more arrangement possible. They are 1 5 7 3 9 2 8 4 6 1 and 1 7 9 5 8 3 6 2 4 1. In general it can be 

shown that for n people the number of such possible arrangements is (n-1)/2, if n is odd. (n-2)/2, if n is 

even  

WHAT IS A GRAPH? 

A linear graph (or simply a graph) G = (V,E) consists of a set of objects V = {v1, v2,…..} called 

vertices, and another set E = {e1, e2,…..} whose elements are called edges, such that each edge ek is 

identified with an unordered pair (vi , vj) of vertices. The vertices vi , vj  associated with edge ek  are 

called the end vertices of  ek . The most common representation of a graph is by means of a diagram, in 

which the vertices are represented as points and each edge as a line segment joining its end vertices 

The object shown in fig (a) 

The Object Shown in Fig.(a) 

 
Fig (a) – Graph with five vertices and seven edges 

Observe that this definition permits an edge to be associated with a vertex pair (vi , vj) such an 

edge having the same vertex as both its end vertices is called a self-loop. Edge e1 in fig (a) is a self-loop. 

Also note that the definition allows more one edge associated with a given pair of vertices, for example, 

V1 

 
V2 

 

e1 

 

e2 

 

e7 

 

e4 

 

e3 

 

V3 

 

V4 

V5 

 

e6 

 

e5 
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edges e4 and e5 in fig (a), such edges are referred to as ‗parallel edges‘. A graph that has neither self-

loops nor parallel edges is called a ‗simple graph‘.  

 

 

FINITE   AND  INFINITE  GRAPHS 

Although in our definition of a graph neither the vertex set V nor the edge set E need be finite, in 

most of the theory and almost all application these sets are finite. A graph with a finite number of 

vertices as well as a finite number of edge is called a ‗finite graph‘: otherwise it is an infinite graph. 

The graphs in fig (a), (1.2), are all examples of finite graphs. Portions of two infinite graphs are shown 

below 

 

 

 

 

 

 

 

 

Fig(1.6) – Portion of two infinite graphs 

INCIDENCE  AND  DEGREE 

When a vertex vi  is an end vertex of same edge ej , vi  and ej are said to be incident with (on or 

to) each other. In fig (a), for examples, edges e2, e6 and e7 are incident with vertex v4. Two nonparallel 

edges are said to be adjacent if there are incident on a common vertex. For example, e2 and e7 in fig (a) 

are adjacent. Similarly, two vertices are said to be adjacent if they are the end vertices of the same edge 

in fig (a), v4 and v5 are adjacent, but v1 and v4 are not. 

The number of edges incident on a vertex vi , with self-loops counted twice, is called the degree, 

d (vi), of vertex vi , in fig (a) for example d(v1) = d(v2) = d(v3) = 3, d(v2) = 4 and d(v5) = 1. The degree 

of a vertex is same times also referred to as its valency. 

Let us now considered a graph G with e edges and n vertices v1, v2 ,…..vn  since each edge 

contributes two degrees 

The sum of the degrees of all vertices in G is twice the number of edges in G that is  

 

 

       

Taking fig (a) as an example, once more d(v1) + d(v2) + d(v3) + d(v4) + d(v5) = 3 + 4 + 3 + 3 + 1 

= 14 = twice the number of edges. 

From equation (1.1) we shall derive the following interesting result. 

 

 

 

 

1

( ) 2 (1.1)
n

i

i

d v e


 
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THEOREM  1.1 

“The number of vertices of odd degree in a graph is always even”. 

Proof : If we consider the vertices with odd and even degree separately, the quantity in the left 

side of equation (1.1) can be expressed as the sum of two sum, each taken over vertices of even and odd 

degree respectively, as follows. 

 

 

Since the left hand side in equation (1.2) is even, and the first expression on the right hand side is 

even (being a sum of even numbers), the second expression must also be even 

 

 

 

Because in equation (1.3) each d(vk) is odd, the total number of terms in the sum must be even to 

make the sum an even number. Hence the theorem. 

A graph in which all vertices are of equal degree is called a „regular graph‟ (or simply a 

regular). 

DEFINITION:  

ISOLATED   VERTEX , PENDANT  VERTEX  AND  NULL GRAPH  

 

 

 

 

 

 

 

 

 

Fig(1.7) –  Graph containing isolated vertices, series edges, and a pendent vertex. 

A vertex having no incident edge is called an ‗isolated vertex‘. In other words, isolated vertices 

are vertices with zero degree. Vertices v4 and v7 in fig(1.7), for example, are isolated vertices a vertex of 

degree one is called a pendent vertex or an end vertex v3 in fig(1.7) is a pendent vertex. Two adjacent 

edges are said to be in series if their common vertex is of degree two in fig(1.7), the two edges incident 

on v1 are in series. 

In the definition of a graph G = (V,E), it is possible for the edge set E to be empty. Such a graph , 

without any edges is called a ‗null graph‟. In other words, every vertex in a null graph is an isolated 

vertex. A null graph of six vertices is shown in fig (1.8). Although the edge set E may empty the vertex 

set V must not be empty; otherwise there is no graph. In other words, by definition, a graph must have 

atleast one vertex  

1

( ) ( ) ( ) (1.2)
n

i k

i even odd

d v d vj d v


    

( ) (1.3)k

odd

d v an even number   

 
● 

● ● 

● 

● 

● 
● 

V1 

V7 

V6 

V5 

V4 

V3 
V2 



Graph Theory and combinatorics                  10CS42 
 

Dept of CSE, SJBIT  9 
 

 

 

 

 

 

 

Fig 1.8: Null graph of Six Vertices 

 

DIRECTED GRAPHS AND GRAPHS:  

 

DIRECTED GRAPHS : 

Look at the diagram shown below. This diagram consists of four vertices A,B,C,D and three 

edges AB,CD,CA with directions attached to them .The directions being indicated by arrows. 

    

 

 

  

 

Fig. 

Because of attaching directions to the edges, the edge AB has to be interpreted as an edge from 

the vertex A to the vertex B and it cannot be written as BA. Similarly the edge CD is from C to D and 

cannot be written as DC and the edge  CA is from C to A and cannot be written as AC .Thus here the 

edges AB, CD, CA are directed edges. 

 

DEFINITION OF A DIRECTED GRAPH : 

A directed graph (or digraph) is a pair (V,E), where V is a non empty set and E is a set of ordered 

pairs of elements taken from the set V. 

For a directed graph (V, E), the elements of V are called Vertices (points or nodes) and the 

elements of E are called “Directed Edges”. The set V is called the vertex set and the set E is called the 

directed edge set 

The directed graph (V,E) is also denoted 

by D=(V,E) or D =D(V,E). 

The geometrical figure that depicts a directed graph for which the vertex set is 

V={A,B,C,D} and the edge set is   

E={AB,CD,CA}={(A,B),(C,D),(C,A)} 

 

 

 

 

Fig. 

 

V3

V1

V4V2 V5

V6

> 

>  
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Fig(1.2) depicts the directed graph for which the  

vertex set is V={A,B,C,D} and the edge set is  

E={AB,CD,AC}={(A,B),(C,D),(A,C)}.   

It has to be mentioned that in a diagram of a directed graph the directed edges need not be 

straight line segments, they can be curve lines (arcs )Also.  

For example, a directed edge AB of a directed graph can be represented  by an arbitrary arc 

drawn from the vertex A to the vertex B as shown in fig(1.3). 

 
   Fig. 

In fig (1.1) every directed edge of a digraph (directed graph) is determined by two vertices of the 

diagraph- a vertex from which it begins and a vertex at which it ends. Thus ,if AB is a directed edge of a 

digraph D. Then it is understood that this directed edge begins at the vertex A of D and terminates at the 

vertex B of D. Here we say that A is the initial vertex and B is the terminal vertex  of AB. 

 

It should  be mentioned that for a directed edge (in a digraph) the initial vertex and the terminal 

vertex need not be different. A directed edge beginning and ending at the same vertex A is denoted by 

AA or (A,A) and is called directed loop.  The directed edge shown in Fig.(1.4) is a directed loop which 

begins and ends at the vertex A. 

 

 

 

 

             Fig. 

A digraph can have more than one directed edge having the same initial vertex and the same 

terminal vertex. Two directed edges having the same initial vertex and the same terminal vertex are 

called parallel directed edges. 

Two parallel directed edges are shown in fig(1.5)(a). 

 
 

 

 

 

> 

> 

> 
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Two or more directed edges having the same initial vertex and the same terminal vertex are 

called “multiple directed edges”. Three multiple edges are shown in fig(1.5)(b). 

IN- DEGREE AND OUT –DEGREE 

If V is the vertex of a digraph D, the number of edges for which V is the initial vertex is called 

the outgoing degree or the out degree of V and the number of edges for which V is the terminal vertex 

is called the incoming degree or the in degree of V. The out degree of V is denoted by d
+
 (v) or o d (v) 

and the in degree of V is denoted by d
- 
(v) or i d (v). 

It follows that 

i. d
+ 

(v) =0, if V is a sink 

ii. d
- 
(v) =0, if V is a source 

iii. d
+ 

(v) = d
- 
(v) = 0, if V is an isolated vertex. 

For the digraph shown in fig(1.6) the out degrees and the in degrees of the vertices are as given 

below 

 
d

+ 
(v1) =  2                                d

-
 (V1) = 1            

d
+ 

(v2) =  1                                   d
-
 (v2) = 3            

d
+ 

(v3) =  1                                   d
- 
(v3) = 2                    

d
+ 

(v4) =  0                                   d
- 
(v4) = 0            

d
+ 

(v5) =  2                                   d
- 
(v5) = 1            

d
+ 

(v6) =  2                                   d
- 
(v6) = 1     

We note that ,in the above digraph, there is a directed loop at the vertex  v3 and this loop 

contributes a count 1 to each of  d
+
 (v3)  and  d

-
 (v3) . 

We  further observe that the above digraph has 6 vertices and 8 edges and the sums of the out-

degrees and in-degrees of its vertices are 

 

 

 

Example 1: Find the in- degrees and the out-degrees of the vertices of the digraph shown in fig (1.8) 

 

 

V1 

V4 

6 6

1 1

( ) 8, ( ) 8j i

i i

d v d v 

 

  

V2 

V6 V5 

V3 
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        Fig. 

SOLUTION: 

The given digraph has 7 vertices and 12 directed edges. The  out-degree of a vertex is got by 

counting the number of edges that  go out of the vertex and the in-degree of a  vertex is got by counting 

the number of edges that  end at the vertex. Thus we obtain the following data  

 

Vertex V1 V2 V3 V4 V5 V6 V7 

Out-degree 4 2 2 1 3 0 0 

In-degree 0 1 2 2 1 2 4 

This table gives the out-degrees and in-degrees of all the vertices. We note that v1 is a source and   v6  

and v7  are sinks. 

We also check that sum of out-degrees = sum of in – degrees = 12 = No of edges. 

Example 2:Write down the vertex set and the directed edge set of each of the following digraphs. 

(i) 

 

                Fig. 

 

 
Fig. (ii)  

Solution of graph (i) & (ii): 

V3 

V4 

V7 

V1 V2 

V6 

V5 

V3 

V4 

V1 V2 
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i) This is a digraph whose vertex set is  

V={A,B,C} and the directed edge set  

E={(B,A),(C,A),(C,A),(C,B),(C,B)}. 

ii) This is a digraph whose vertex set is  

V={V1,V2,V3, V4} and the directed edge set  

E={( V1,V2),( V1,V3),( V1,V3), 

( V2,V3),( V3,V2) ),( V3,V4) ,(V4,V4)}. 

Example 3: For the digraph shown in fig, determine the out-degrees and in-degrees of all the vertices  

 
Solution: d

-
 (V1) =0, d

-
 (v2) = 3,d

-
 (v3) =0, d

- 
(v4) = 0,d

- 
(v5) = 1,d

- 
(v6) = 1 

   d
+ 

(v1) = 2 ,d
+ 

(v2) = 0, d
+ 

(v3) = 1,d
+ 

(v4) = 0 ,d
+ 

(v5) =  1, d
+ 

(v6) = 1  

Example 4: Let D be the digraph whose vertex set  

V={V1,V2,V3, V4 ,V5 } and  the directed edge set is  

E ={( V1,V4),( V2,V3), (V3,V5),(V4,V2),(V4,V4),(V4,V5),(V5,V1)}. 

   Write down a diagram of D and indicate the out-degrees and in-degrees of all the vertices  

 
 

vertices V1 V2 V3 V4 V5 

D
+
 1 1 1 3 1 

d
-
 1 1 1 2 2 

 

 

DEFINITION : 

SIMPLE GRAPH : 

A graph which does not contain loops and multiple edges is called simple graph. 

 

 

V1 

V2 

V5 

V4 

V3 

V3 

V1 
V2 

V6 V5 V4 
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Fig. Simple Graph 

LOOP FREE GRAPH.  

    A graph which does not contain loop is called loop free graph.  

 

MULTIGRAPH 

     A graph which contain multiple edges but no loops is called multigraph. 

 
Fig. Multigraph 

 

GENERAL GRAPH  

A graph which contains multiple edges or loops (or both) is called general graph. 

 

 
              

COMPLETE GRAPH : 

A simple graph of order  ≥ 2 in which there is an edge between every pair of vertices is called a 

complete graph (or a full graph). 

In other words a complete graph is a simple graph in which every pair of distinct vertices are 

adjacent. 

    A complete graph with  n  ≥ 2 vertices is denoted by Kn .  

 

A complete graph with   2,3,4,5 vertices are shown in fig (1.9)(a) to (1.9)(d) respectively. Of 

these complete graphs ,the complete graph with 5 vertices namely  K5(shown in fig.1.9 (d),is of great 

importance. This graph is called the Kuratowski‘s first graph 

 

V

1 
V1 V2 

V4 

V3 

e1 

e5 

e2 e3 

e6 e4 
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Fig.(1.9) 

 
           (a) : K2          (b) : K3                                    (c) : K4                    (d) : K5 

 

 

BIPARTITE GRAPH 

 

Suppose a simple graph G is such that its vertex set V is the union of two of its mutually disjoint 

non-empty subsets V1 and V2 which are such that each edge in G joins a vertex inV1 and a vertex 

inV2.Then G is called a bipartite graph. If E is the edge set of this graph, the graph is denoted by G = 

(V1, V2: E), or G = G(V1, V2: E). The sets V1and V2 are called bipartites (or partitions) of the vertex set 

V. 

 
Fig. (1.10) 

For example, consider the graph G in fig(1.10) for which the vertex set is 

V={A,B,C,P,Q,R,S} and the edge set is  

E= {AP,AQ,AR,BR,CQ,CS}. Note that the set V is the union of two of its subsets V1={ A,B,C} and 

V2={P,Q,R,S} which are such that  

i)  V1 and V2 are disjoint.  

ii)  Every edge in G joins a vertex in V1 and a vertex      in V2.  

iii) G contains no edge that joins two vertices both of which are in V1 or V2. This graph is a bipartite 

graph with V1={ A,B,C} and V2={P,Q,R,S} as bipartites. 

 

COMPLETE BIPARTITE GRAPH 

A bipartite graph G= {V1, V2 ; E} is called a complete bipartite graph, if there is an edge 

between every vertex in V1 and every vertex in V2 . 

The bipartite graph shown in fig (1.10) is not a complete bipartite graph. Observe for example 

that the graph does not contain an edge joining A and S. 

A complete bipartite graph G={ V1, V2 ; E} in which the bipartites V1and V2 contain r and s 

vertices respectively, with r  s is denoted by Kr,s .In this graph each of r vertices in V= is joined to each 
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of s vertices in V2 .Thus Kr,s has r+ s vertices and rs edges. That is Kr,s is of order r+s and size rs. It is 

therefore a (r+ s,rs) graph 

 

 

 

 

 

(a) K1,3  (b) K1,5                   (c) K2,3             (d) K3,3  

Fig. 1.11 

 

Fig 1.11 (a) to (d) depict some bipartite graphs. Observe that in  fig 1.11(a),the bipartites are 

V1={ A } and V2={P,Q,R}; the vertex A is joined to each of the vertices P,Q,R by an edge. In fig 

1.11(b) ,the bipartites are V1={A} and 

 

V2={M,N,P,Q,R}; the vertex A is joined to each of the vertices M,N,P,Q,R by an edge. In fig 

1.11(c) ,the bipartites are V1={ A,B } and V2={ P,Q,R}; each of the vertices A and B is joined to each of 

the vertices P,Q,R by an edge. In fig 1.11(d),the bipartites are V1={ A,B,C } and V2={P,Q,R}; each of 

the vertices A,B,C is joined to each of the vertices P,Q,R. Of these complete bipartite graph the graph 

K3,3 shown in fig 1.11(d),is of great importance. This is known as Kuratowski‟s second graph. 

 

Example 1. Draw a diagram of the graph G = (V,E) in each of the following cases. 

a) V= { A,B,C,D} ,E={AB,AC,AD,CD} 

b) V={V1,V2,V3, V4 ,V5 }, 

    E={V1V2 ,V1V3,V2V3,V4V5}. 

c) V= {P,Q,R,S,T} ,E={PS,QR,QS} 

d) V={ V1,V2,V3, V4 ,V5,V6},  

    E={V1V4,V1V6,V4V6,V3V2,V3V5,V2V5} 

 

 

 Solution :The required diagram are shown below 

 

 

 

 

 

 

 

 

 

 

 

Fig: (b) Fig: (a) 

Fig: (c ) Fig: (d) 
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Example 2: Which of the following is a complete graph? 

 

 

 

 

 

 

Solution: The first of the graph is not complete. It is not simple on the one hand and there is no 

edge between A and C on the other hand. The second of the graphs is complete. It is a simple graph and 

there is an edge between every pair of vertices.  

 

Example 3: Which of the following graphs is a simple graph? a multigraph ? a general graph ? 

 

 

 

 

 

 

 

 

 

 

Solution:   (i) General Graph,  

  (ii) Simple Graph,  

    (iii) Multigraph 

 

Example 4: Identify the adjacent vertices and adjacent edges in the graph shown in Figure. 

 

 

 

 

 

 

 

 

Solution :  

Adjacent Vertices : V1 & V2, V1 & V3, V1 & V4,V2 & V4. 

Adjacent edges : e1 & e2, e1 & e3, e1 & e5, e1 & e6, e2 & e4, e2 & e5, e2 & e6, e3 & e5, e3 and e6.  

VERTEX  DEGREE  AND  HANDSHAKING  PROPERTY : 

(a) (b)

(i) (ii) (iii)

V1 

V4 V3 

V1 

V4 V3 

V1 

V4 V3 

V2 V2 V2 e1 

e2 e3 

e4 

e5 e6 
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Let G = (V,E) be a graph and V be a vertex of G. Then the number of edges of G that are 

incident on V (that is, the number of edges that join V to other vertices of G) with the loops counted 

twice is called the degree of the vertex V and is denoted by deg(v) or d(V). 

The degree of the vertices of a graph arranged in non-decreasing order is called the degree 

sequence of the graph. Also, the minimum of the degree of a graph is called the degree of the graph 

 

 

 

 

 

 

 

 

 

 

The graph shown in fig1.13 (c) is a 3-regular graph (cubic graph). This particular cubic graph, which 

contains 10 vertices and 15 edges, is called the Peterson Graph.  

 

 

 

 

 

 

 

 

The graph shown in fig (d) is a cubic graph with 8 = 2
3
  vertices. This particular graph is called the 

three dimentional hyper cube and is denoted by Q3. 

 

Handshaking property : 

Let us refer back to degree of the graph shown in fig 1.14. we have, in this graph, 

 

 

 

 

 

 

 

 

 

d(V1) = 3, d(V2) = 4, d(V3) = 4, d(V4) = 3 

Also,the graph has 7 edges, we observe that deg (V1) + deg (V2) + deg (V3) + deg (V4) = 14 = 2 x 7  

Figure ( c )
Figure ( d )

Figure (1.12) 

V 1 

V 3 V 2 

V 4 V 1 

V 3 V 2 

V 4 

V 1 

V 3 V 2 

V 4 V 1 

V 3 V 2 

V 4 

fig (1.14) 
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Example : For a graph with n-vertices and m edges, if δ is the minimum and Δ is the maximum of 

the degrees of vertices, show that  

Solution : Let d1, d2,….,dn, be the degrees of the vertices. Then, by handshaking property, we have 

d1 + d2 + d3 + ----- + dn = 2m ---------(i) 

Since δ = min(d1, d2,….,dn), we have  d1 ≥ δ ,  

d2 ≥ δ ,……., dn≥ δ . 

Adding these n inequalities, we get   

d1 + d2 + ---- + dn  ≥ n δ ------(ii) 

Similarly, since   = max (d1, d2,….,dn), we get   

d1 + d2 + ---- + dn   n  ----(iii) 

From (i), (ii) and (iii), we get 2m≥ n δ and 2m  n   , so that n δ  2m n,  

or   

 

 

SUBGRAPHS 

 

 

 

 

 

 

Fig. (1.6) 

 

Given two graphs G and G1, we say that G1 is a subgraph of G if the following conditions hold: 

(1). All the vertices and all the edges of G1 are in G. 

(2). Each edges of G1 has the same end vertices in G as in G1. 

Essentially, a subgraph is a graph which is a part of another graph. Any graph isomorphic to a 

subgraph of a graph G is also referred to as a subgraph of G. 

Consider the two graphs G1 and G shown in figures 1.16(a) and 1.16(b) respectively, we observe 

that all vertices and all edges of the graph G1 are in the graphs G and that every edge in G1 has same end 

vertices in G as in G1.Therefore G1 is a subgraph of G .In the diagram of G ,the part G1 is shown in thick 

lines. 

The following observation can be made immediately. 

i) Every graph is a sub-graph of itself. 

ii) Every simple graph of n vertices is a subgraph of the complete graph Kn. 

iii) If G1 is a subgraph of a graph G2 and G2 is a subgraph of a graph G,then G1 is a subgraph of a 

graph G. 

iv) A single vertex in a graph G  is a subgraph of a graph G. 

v) A single edge in a graph G together with its end vertices,is a subgraph of G 

 

2m

n
   

2m

n
   

  (a) : G1 
                    

(b) : G 
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SPANNING SUBGRAPH : 

 

Given a graph G=(V, E), if there is a subgraph G1=(V1,E1) of G such that V1=V then G1 is called a 

spanning subgraph of G. 

In other words , a subgraph   G1  of  a graph G is  a spanning subgraph of G whenever the vertex set 

of G1 contains all vertices of G. Thus a graph and all its spanning subgraphs have the same vertex 

set. Obviously every graph is its own spanning subgraph.  

 

 

 

 

 

 

 

 

 

For example, for the graph shown in fig1.17(a), the graph shown in fig 1.17(b) is a spanning 

subgraph where as the graph shown in fig1.17(c) is a subgraph but not a spanning subgraph 

 

INDUCED SUBGRAPH 

Given a graph G=(V,E), suppose there is a subgraph G1=(V1,E1) of G such that every edge {A,B} of 

G, where AB є V1 is an edge of G1 also .then G1 is called an induced subgraph of G (induced by V1) 

and is denoted by < V1 >. 

It follows that a subgraph G1=(V1,E1) of  a graph G=(V,E) is not an induced subgraph of G, if for 

some A,B є V1,there is an edge{A,B} which is in G but not in G1.  

For example, for the graph shown in the figure 1.18 (a), the graph shown in the figure 1.18 (b), is an 

induced subgraph,  induced by the set of vertices V1= {v1,v2,v3,v5} where as the graph shown in the 

figure 1.18 (c) is not an induced subgraph  

 

 

 

 

 

 

 

EDGE-DISJOINT AND VERTEX-DISJOINT SUBGRAPHS 

Let G be a graph and G1 and G2 be two subgraphs of G. then  

G1 and G2 are said to be edge disjoint if they do not have any common edge. 

G1 and G2 are said to be vertex disjoint if they do not have any common edge and any common vertex. 

 

Figure (1.17 ) 

(a) (b) ( c )  

Figure 1.18 (a, b & c) 

(a) (b) (c) 

V2 V3 

V4 V5 

V1 
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It is to be noted that edge disjoint subgraphs may have common vertices. Subgraphs that have no 

vertices in common cannot possibly have edges in common. 

For example ,for the graph shown in the figure 1.19 (a), the graph shown in the figure1.19 (b) and 1.19 

(c) are edge disjoint but not vertex disjoint subgraphs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example : For the graph shown in fig 1.20   ,find two edge-disjoint subgraphs and  two vertex-

disjoint subgraphs . 

 

 

 

 

 

 

 

Solution:for the given graph, two edge-disjoint subgraphs are shown in fig 1.21(a) and two vertex-

disjoint subgraphs are shown in fig 1.21(b). 

      fig 1.21 

 

 

 

 

 

set is E1E2 where E1E2 is the symmetric difference of E1 and E2.This graph is called the  ring sum of 

G1 and G2.It is denoted by G1G2. Thus G1G2 = (V1UV2, E1E2). 

 

For the two graphs G1 and G2 shown in figures 1.22 (a) and (b), their union ,intersection and ring sum 

are shown in figures 1.23 (a), (b) and (c) respectively. 

 

 

(a) (b) (c) 

Figure 1.19: 

Figure 1.20 

 (a )                                                            (b)   
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DECOMPOSITION 

We say that a graph G is decomposed (or partitioned) in to two subgraphs G1 & G2 if G1 Ù G2 = 

G & G1∩G2 = null graph 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.24 (a, b, c)

(a) : G
(b) : G-v

(c) : G-e

(a) : G 1 (b) : G 2 

Fig 1.22 

(a) G 1 U G 2 

Fig 1.23 

(b) G 1 n G 2 

v1 v2 v6 

v5 v4 v3 

v1 

v4 

v2 

v3 

Fig 1.23: ( c ) G 1  G 2 

v3 v4 v5 

v1 v2 v6 
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COMPLEMENT OF A SUBGRAPH 

Given a graph G and a subgraph G1 of G ,the subgraph of G obtained by deleting from all the 

edges that belongs to G1 is called the complement of G1 in G;it is denoted by G-G1 or G1  

 In other words ,if E1 is the set of all edges of G1 then the complement of G1 in G is given by G1 = 

G-E1.We can  check that    G1=GG1.  

For example : 

Consider the graph G shown in fig 1.25(a) .Let G1 be the subgraph of G shown by thick lines in 

this figure. The complement of G1 in G, namely G1, is as shown in fig 1.25(b) 

 

 

 

 

 

 

 

 

 

 

 

COMPLEMENT OF A SIMPLE GRAPH 

Earlier we have noted that every simple graph of order n is a subgraph of the complete graph Kn 

If G is a simple graph of order n ,then the complement of G in Kn is called the complement of G, it is 

denoted by G. 

Thus, the complement  G of a simple graph G with n vertices is that graph which is obtained by 

deleting those edges of  Kn which belongs to G. Thus G =Kn-G =KnG.      

Evidently Kn, G and G have the same vertex set and two vertices are adjacent in G if and only if 

they are not adjacent in G. Obviously, G is also a simple graph and the complement of  G is G that is G 

= G 

In fig 1.26(a), the complete graph K4 is shown. A simple graph G of order 4 is shown in fig 

1.26(b). The complement  G, of G is shown in fig 1.26(c). 

Observe that G, G & K4 have the same vertices and that the edges of  G are got by deleting those 

edges from K4 which belong to G. 
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Fig. (a): K4 Fig. (b): G

Fig. (c): G

Figure 1.26 a, b & c

_

. . . 

Fig. 1.25(a) Fig.1.25 (b) 
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In fig1.27(a) ,a graph of order 6 is shown as a subgraph of K6 ,the edges of G being shown in 

thick lines .Its complement G, is shown in fig1.27(b).The graph shown in fig1.27(b) is known as David 

Graph. 

Fig. 1.27 

 

 

 

 

 
           

          (a)            (b) 

 

Example 1.Show that the complement of a bipartite graph need not be a bipartite graph. 

Solution: Fig 1.28(a) shows a bipartite graph which is of order 5.The complement of this graph is 

shown in fig1.28(b),this is not a bipartite graph.  

 

   Fig. 1.28(a)         Fig. 1.28(b) 

 

 

 

 

 

Example 2.Let G be a simple graph of order n.If the size of graph G is 56 and size of  is G 80.What is 

n? 

Solution:We know that G =Kn-G therefore 

Size of G = (Size of Kn)- (Size of G) 

Since size of Kn (ie the number of edges in Kn) is ½(n)(n-1),this yields  

80 =  ½ n(n-1) – 56 

or  n(n-1) = 160 + 112 = 272 = 17 x 16 

thus, n = 17, (that is, G is of order 17)  

 

Example 3: Find the union, intersection and the ring sum of the graph G1 and G2  shown below.  

Fig. 1.29(G)     Fig. 1.29(G) 
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V
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Example 4: For the graph G shown below, find G-v and G-e . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 5: Find the complement of each of the following simple graphs  

 

 

 

 

 

 

 

..

..

..

..

Solution :

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Fig. 1.31 

G-v G-e 

.

.

.

. . .

. .

. .

. .

.

.

.

.

.

.

.

.

.

.

Fig. 1.32

(a) (b) (c)

Solution :  G 1  U G 2 

Union : - 

Intersection : - G 1  n G 2 

. 

. 
. 

. 

. 

. 

. 

. 

. 

. 

Ring Sum : - G 1  Δ G 2 

. 

. 

. . 

. . . 

. 

. . 

. . 

Fig 1.30 

. . 

. 

. . 

V 

e 

. . 

. 

. . 

V 

e 
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Example 6: Find the complement of the complete bipartite graph K3,3 

Solution :  

 

 

 

 

 

 

 

 

 

WALKS  AND  THEIR  CLASSIFICATION  

WALK: 

Let G be a graph having atleast one edge. In G, consider a finite, alternating sequence of vertices 

and edges of the form vi  ej  vi+1  ej+1  vi+2,…..,ek vm  which begin and ends with vertices and which is 

such that each edge in the sequence is incident on the vertices preceding and following it in the 

sequence. Such a sequence is called a walk in G. In a walk, a vertex or an edge (or both) can appear 

more than once.  

The number of edges present in a walk is called its ‗length‘.  

 

For example :  Consider the graph shown below; 

 

 

 

 

 

 

           Fig.1.35 
 

In this graph, 

i) The sequence v1e1 v2c2 v3,e8v6 is a walk of length 3 (because this walk contains 3 edges; e1,e2,e8).  In 

this walk, no vertex and no edge is repeated. 

ii) The sequence v1,e4 v5e3 v2c2v3e5 v5e6v4 is a walk of length 5.  In this walk, the vertex v5 is 

repeated; but no edge is repeated. 

iii) The sequence v1e1v2e3v5e3v2e2v3 is a walk of length 4.  In this walk, the edge e3 is repeated and 

the vertex v2 is repeated 

A walk that begins and ends at the same vertex is called a closed walk. In other words, a closed 

walk is a walk in which the terminal vertices are coincident. 

V1

V2 V3

V4

V5

e1

e2

e3

e4

e5

e6

e7

V6

.

.

.

V1

V2 V3

V4

V5

e1

e2

e3

e4

e5

e6

e7

V6

.

.

. V3

V4

V5

e1

e2

e3

e4

e5

e6

e7

V6

.

.

.

V4

V5

e1

e2

e3

e4

e5

e6

e7

V6

.

.

.

V4

V5

e1

e2

e3

e4

e5

e6

e7

V6

.

.

.

. 

. 
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. 

. 

. 

. 

. 

. 

. 

. 

Fig. 1.34 
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 A walk which is not closed is called an open walk.  In other words, an open walk is a walk that 

begins and ends at two different vertices.  

For Example, in the graph shown in figure (1.35) v1e1v2c3v5e4v1 is a closed walk and 

v1e1v2e2v3e5v5 is our open walk. 

TRAIL  AND  CIRCUIT: 

In a walk, vertices and /or edges may appear more than once, if in an open walk no edge appears 

more than once, than the walk is called a trail.  A closed walk in which no edge appears more than once 

is called a circuit. 

For example:  In fig (1.35), the open walk v1e1v2e3v5e3v2e2v3 (shown separately in figure 1.36(a) 

is not a trail (because, in this walk, the edge e3 is repeated) where as 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The open walk v1e4v5e3v2v2v3e5v5e6v4 (shown separately in fig 1.36(b)  is trail. 

Also, in the same fig (ie., in fig1.35), the closed walk v1 e1v2 e3 v5 e3 v2 e2 v3 e5 v5 e4 

v1  (shown separately in fig  1.37(a) is not a circuit (because e3 is repeated) where as the closed walk 

v1e1v2e3v5e5v3e7v4e6v5e4v1 (shown separately in fig1.37(b)) is a circuit. 

 

 

 

 

 

 

 

 

Fig. 1.37(a)                  Fig. 1.37(b)         
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(a): Not a circuit (b): Circuit
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Fig. 1.36 (a) :Not a trail 

Fig. 1.36 (b): trail 
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PATH AND CYCLE: 

 

A trail in which no vertex appears more than once is called a path. 

A Circuit in which the terminal vertex does not appear as an internal vertex (also) and no internal vertex 

is repeated is called a ‗cycle‘. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For example, in figure (1.35), the trail v1e1e3v5e5v3e7v4 (shown separately in fig 1.38(a)) is a path 

whole as the trail v1e4v5e3v2e2e5v5e6v4 (shown separately in fig 1.38(b) is not a path (because in 

this trail, v5 appears twice). 

 Also, in the same fig, the circuit v2e2v3e5v5e3v2 (shown separately in fig 1.39(a)) is a cycle 

where as the circuit v2e1v1e4v5e5v3e7v4e6v5e3v2 (shown separately in fig 1.39(b) is not a cycle 

(because, in this circuit, v5 appears twice) 

 

 

EULER CIRCUITS AND EULER TRAILS. 

Consider a connected graph G. If there is a circuit in G that contains all the edges of G. Than that 

circuit is called an Euler circuit (or Eulerian line, or Euler tour) in G.  If there is a trail in G that 

contains all the edges of G, than that trail is called an Euler trail. 

Recall that in a trail and a circuit no edge can appear more than once but a vertex can appear 

more than once.  This property is carried to Euler trails and Euler Circuits also. 

Since Euler circuits and Euler trails include all edge, then automatically should include all vertices as 

well. 

A connected graph that contains an Euler circuit is called a Semi Euler graph (or a Semi Eulerian 

graph). 

Fig. 1.38
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For Example, in the graph shown in figure 1.41 closed walk. 

Pe1Qe2Re3Pe4Se5Re6Te7P is an Euler circuit.  Therefore, this graph is a an Euler graph. 

 

 

 

 

 

 

 

 

 

Consider the graph shown in fig.1.41. We observe that, in this graph, every sequence of edges 

which starts and ends with the same vertex and which includes all edges will contain at least one 

repeated edge.  Thus, the graph has no Euler circuits.  Hence this graph is not an Euler graph.  

 

 

 

 

 

 

 

 

It may be seen that the trail Ae1Be2De3Ce4Ae5D in the graph in fig 1.42 is an Euler trail.  This 

graph therefore a Semi – Euler Graph. 

Example 1:  Show that the following graph contains an Euler Circuits  

 

 

 

 

 

             Fig.1.43 

 

Solution:  The graph containas an Euler Circuit PAQBRQP 

 

 

 

 

 

 

 

 

Fig 1.41
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Example 2:  find an Euler circuit in the graph shown below. 

 

   Fig.1.44 

 

 

 

 

 

 

 

 

 

 

 

 

Example 3:  show that the following graph contains an Euler trail. 

 

                   Fig. (1.45) 

 

 

 

 

 

 

 

Solution:  the graph contains Pe1Te2Se3Pe4Qe5Se6Re7Qas an Euler trail. 

 

ISOMORPHISM : 

Consider two graphs G = ( V, E ) and G‘ = (V‘, E‘) suppose their exists a function f : V  V‘ 

such that (i)  f is a none to one correspondence and(ii) for all vertices A, B of G {A, B} is an edge of G 

if and only if { f(A), f(B)} is an edge of G‘, then f is called as isomorphism between G and G‘, and we 

say that G and G‘ are isomorphic graphs.  

For example, look at the graphs shown in fig1.46 
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Solution: 

V 1 V 2 V 9 V 10 V 2 V 11 V 7 V 10 V 11 V 6 V 4 V 2 V 3 V 4 V 5 V 6 V 7 V 8  V 9 V 1 
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Consider the following one to one  correspondence between between the vertices of these two graphs. 

A P, B Q, C  R, D  S 

Under this correspondence, the edges in two graphs correspond with each other as indicated below: 

{A, B}  {P, Q}, {A, C}  {P, R}, {A, D}  {P, S}    

{B, C}  {Q, R}, {B, D}  {Q, S}, {C, D}  {R, S}, 

We check that the above indicated one to cone correspondence between the     

 

We observe that the two graphs have the same mumber of vertices but different number of edges.  

Therefore, although there can exist one-to-one correspondence between the vertices, there cannot be a 

one-to-one correspondence between the edges.  The two graphs are therefore not isomorphic. 

From the definition of isomorphism of graphs, it follows that if two graphs are isomorphic, then 

they must have  

1. The same number of vertices. 

2. The same number of edges. 

3. An equal number of vertices with a given degree. 

These conditions are necessary but not sufficient.  This means that two graphs for which these 

conditions hold need not be isomorphic. 

In particular, two graphs of the same order and the same size need not be isomorphic. To see this, 

consider the graphs shown in figures 1.48(a) and (b). 

 

Fig.1.48(a) 

 

 

 

 

 

 

 

We note that both graphs are of order 4 and size 3. But the two graphs are not isomorphic.  

Observe that there are two pendant vertices in the first graph where as there are three pendant vertices in 

the second graph.  As such, under any one-to-one correspondence between the vertices and the edges of 

the two graphs, the adjacency of vertices is not preserved 

Example 1: 

Prove that the two graphs shown below are isomorphic. 

Fig.1.49 

 

 

 

 

 

Fig. (a) Fig. (b)
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Fig. (a) Fig. (b)



Graph Theory and combinatorics                  10CS42 
 

Dept of CSE, SJBIT  32 
 

 

Solution:  We first observe that both graphs have four vertices and four edges.  Consider the following 

one – to- one correspondence between the vertices of the graphs. 

u1  v1, u2  v4, u3  v3, u4  v2. 

This correspondence give the following correspondence between the edges. 

{u1,u2}  {v1,v4} , {u1,u3}  {v1,v3} 

{u2,u4}  {v4,v2}, {u3, u4}  {v3, v2}. 

These represent one-to-one correspondence between the edges of the two graphs under which the 

adjacent vartices in the first graph correspond to adjacent vertices in the second graph and vice-versa. 

Example  2:  Show that the following graphs are not isomorphic. 

 

 

 

 

 

 

 

 

 

Solution:  We note that each of the two graphs has 6 vertices and nine edges.  But, the first graph has 2 

vertices of degree 4 where as the second graph has 3 vertices of degree 4.  Therefore, there cannot be 

anyone-to-one correspondence between the vertices and between the edges of the two graphs which 

preserves the adjacency of vertices.  As such, the two graphs are not isomorphic. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.50
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       UNIT 2 

                    

PLANAR GRAPHS: 

 

It has been indicated that a graph can be represented by more than one geometrical drawing.  In 

some drawing representing graphs the edges intersect (cross over) at points which are not vertices of the 

graph and in some others the edges meet only at the vertices.  A graph which can be represented by at 

least one plane drawing in which the edges meet only at vertices is called a ‗planar graph‘ 

On the other hand, a graph which cannot be represented by a plane drawing in which the edges 

meet only at the vertices is called a non planar graph. 

In other words, a non planar graph is a graph whose every possible plane drawing contains at 

least two edges which intersect each other at points other than vertices. 

Example 1 

Show that (i) a graph of order 5 and size 8, and (ii) a graph of order 6 and size 12, are planar 

graphs. 

Solution:  A graph of order 5 and size 8 can be represented by a plane drawing 

 

 

 

 

 

 

In which the edges of the graph meet only at the vertices, as shown in fig. 2.1 (a) therefore, this 

graph is a planar graph.  Similarly, fig. 2.1(b) shows that a graph of order 6 and size 12 is a planar graph.  

Example 2: 

Show that the complete graphs K2,K3 and K4 are planar graphs. 

 

 

 

 

 

Fig. 2.1
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.

.

.

Fig. (a) Fig. (b)
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Solution:  the diagrams in fig 2.2 represent the graphs K2,K3,K4.  In none of these diagrams, the edge 

meet at points other than the vertices. Therefore K2, K3, K4 are all planar graphs. 

Example 3: 

Show that the bipartite graphs K2.2 and K2,3 are planar graphs. 

 

 

 

 

 

 

 

 

Solution:  In K2,2, the vertex set is made up of two bipartites V1,V2, with V1 containing two vertices say 

V1,V2 and V2 containing two vertices, say V3,V4, and there is an edge joining every vertex in V1 with 

every vertex in V2 and vice-versa.  Fig 2.3(a) represents this graph.  In this fig. the edges meet only at 

the vertices therefore, K2,2 is a planar graph. 

In K2,3 the vertex set is made up of two bipartites V1 and V2, with V1 containing two vertices, say 

V1,V2, and V2 containing three vertices, say V3,V4,V5 and there is an edge joining every vertex in V1 

with every vertex in V2and Vice Versa.  Fig. 2.3(b) represents this graph.  In this figure the edges meet 

only at the vertices, therefore K2,3 is a planar graph. 

Example4:   

Show that the complete graph K5 (viz., the Kuratowskis first graph) is a non planar graph. 

Solution: 

We first recall that in the complete graph K5 there are 5 vertices and there is an edge between 

every pair of vertices, totaling to 10 edges.  (see fig. Ref. complete graph).  This fig is repeated below 

with the vertices named as V1,V2,V3,V4,V5 and the edges named e1,e2,e3,……e10 

 

 

 

 

Fig. 2.3
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In the above drawing of K5, the five edges e1,e5,e8 e10,e4 form a pentagonal cycle and the 

remaining five edges e2,e3,e6,e7,e9 are all 

Inside this cycle and intersect at points other than the vertices. 

Let us try to draw a diagram of K5 in which the edges meet ony at the vertices.  In the pentagonal 

cycle present in fig (2.4) the edges meet only at the vertices.  Let us start our new drawing  of K5 with 

this cycle:  the cycle is shown in fig. 2.5 (a)  

 

 

 

 

 

 

 

 

Consider the edge e7 = {V2V5}.  This  edge can be drawn either inside or outside the pentagonal 

cycle.  Suppose we draw it inside, as shown in fig. 2.5 (b) the other case is similar now, consider the 

edges e2 = {V1V3} & e3 = {V1V4}.  If we draw these edges also inside the pentagon, they will intersect 

e7, that is, they cross e7 at points, which are not vertices, therefore, let us draw of them outside: see fig. 

2.5 (b). 

Next consider the edge e6 = {V2,V4} if we draw this edge outside the pentagon intersects the 

edge e2; see fig 2.5(b)  therefore let us draw e6 inside the pentagon. 

Lastly, consider the edge e9 = {V3,V5}If we draw this edge outside the pentagon, it intersects the 

edge e3, and if we draw it inside, it intersects the edge e6. 

 This demonstrates that in every possible plane drawing of K5 at least two edges of K5 intersect at a point 

which is not a vertex of K5. 

 This proves that K5 is a non planar graph. 

 

 

 

 

 

Fig. 2.5  
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Let us name the vertices in V1 as v1,v2,v3 and the vertices inV2 as v4,v5,v6.  Also let the edges be 

named as e1,e2,e3,…….e9. 

A diagram of the graph is shown in fig (2.6).  In this diagram of K3,3.  the six edges e1 = {v1,v4}, 

e4={v4v2}, e5 ={v2v5}, e8={v5,v3} e9={v3,v6} and e3={v6,v1} form a hexagonal cycle and the remaining 

three edges e2,e6,e7 either intersect these edges or intersect among themselves at points other than the 

vertices. 

Let us try to draw a diagram of K3,3 in which no two of its edges intersect.  The hexagonal cycle 

present in fig.2.6 does not contain any mutually intersecting edges.  Let us start our new drawing of K3,3 

with this cycle.  This cycle is exhibited separately in fig. 2.7 (a) 

 

 

 

 

 

 

 

Consider three edge e6={v2,v6} this edge can be drawn either inside the hexagonal cycle or 

outside it.  Let us draw it inside (as shown in fig.2.7 (b) the other case is similar. Now consider the edge 

e2 = {v1,v5}.  If we draw this edge the hexagon, it intersects the edges e6. Therefore, let us draw it 

outside the hexagon see fig. 2.7 (b) 

Next consider the edge e7 ={v3,v4}.  If this edge is drawn inside the hexagon, it intersects the 

edgte e6, and if it is drawn outside the hexagon, it intersects the edge e2 

This demonstrates that in every possible plane drawing of K3,3, at least two edges of K3,3 intersect at a 

point which is not a vertex of K3,3. this proves that K3,3 is a non planar graph. 

 

Fig. 2.7
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Example 6 

Suppose there are three houses and three utility points (electricity, water sewerage, say) which are 

such that each utility point is joined to each house.  Can the lines of joining be such that no two lines 

cross each other ? 

 

 

 

 

 

 

 

Solution: 

Consider the graph in which the vertices are the three houses (h1,h2,h3) and the three utility points 

(u1,u2,u3).  Since each house is joined to each utility point.  The graph has to be K3,3 (see fig. 2.8).  This 

graph is non-planar and therefore, in its plane drawing, at lest two of its edges cross each other.  As 

such, it is not possible to have the lines joining the houses and the utility  points such that no two lines 

cross each other. 

 

HAMILTON CYCLES AND HAMILTON PATHS 

Let G be a connected graph.  If there is a cycle in G that contains all the vertices of G, then that 

cycle is called a ‗Hamilton Cycle‘ in G. 

A Hamilton cycle in a graph of n vertices consists of exactly n edges, because, a cycle with n vertices 

has n edges. 

By definition, a Hamilton cycle in Graph G must include all vertices in G, This does not mean 

that it should include all edges of G.   

A  graph that contains a Hamilton cycle is called a Hamilton graph (or Hamiltonian graph). 

For example, in the graph shown in fig. (2.7), the cycle shown in thick lines is a Hamilton cycle.  

(observe that this cycle does not include the edge BD). the graph is therefore a Hamilton graph. 

 

 

 

A B 

D C 

h 1 h 2 

Fig. 2.8 

h 3 

u 1 u 2 u 3 
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     Fig.2.7 

A path (if any) in a connected graph which includes every vertex (but not necessarily every edge) of the 

graph is called a Hamilton / Hamiltonian path in the graph. 

For example:  In the graph shown in fig (2.8), The path shown in thick lines is a Hamilton path. 

 

 

 

       Fig. 2.8 

In the graph shown in fig. (2.9), the path ABCFEDGHI is a Hamilton path.  We check that this 

graph does not contain a Hamilton cycle. 

 

Since a Hamilton path in a graph G meets every vertex of G, the length of a Hamilton path (if 

any) in a connected graph of n vertices is n-1 (a path with  n vertices has n-1 edges) 

 

Example 3: 

Disprove the converses of theorems 1 and 2. 

Solution:  Consider a 2 – Regular graph with n=5, vertices, shown in fig. (2.10) 

 

Evidently, this graph is Hamiltonian.  But the degree of every vertex is 2 which is less  than n/2 

and the sum of the degrees of every pair of vertices is 4 which is less than n. 

Thus, the converses of theorems 1 & 2 are not necessarily true. 

Example 4: 

Solution:   
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Fig. (b) 
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Fig. 2.12 

 

 

 

 

(C) A graph which has a Hamilton cycle but no Euler Circuit. 

 

 

 

 

 

(d):  A graph which has neither a Hamilton cycle nor an Euler circuit. 

 

 

 

 

 

 

 

The following theorem contains useful information on the existence of Hamilton cycle in the complete 

graph Kn. 

Theorem 3:  In the complete graph with n vertices, where n is an odd number ≥ 3, there are (n-1) / 2 

edge - disjoint Hamiltonian cycles. 

Proof:   

Let G be a complete graph with n vertices, where n is odd and ≥ 3.  Denote the vertices of G by 

1,2,3…..n and Represent them as points as shown in fig. (2.12) 

 

 

 

 

 

Mutually edge –disjoint Hamilton cycle. 
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Fig. 2.13 
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● 

This completes the proof of the theorem. 

Example 7:   

How many edge - disjoint Hamilton cycles exist in the complete graph with seven vertices?  

Also, draw the graph to show these Hamilton cycles. 

Solution:      

According to theorem 3, the complete graph Kn has (n-1)/2 edge - disjoint Hamilton cycles when 

n ≥ 3 and n is add.  When n = 7, their number is (7-1)/2 = 3.  As indicated in the proof of Theorem 3 .   

One of these Hamilton cycles appears as shown in fig (2.13) 

 

 

 

 

 

The other two cycles are got by rotating the above shown cycle clock wise through angles. 

1 = 360
0
/7-1, = 60 , and 2 = 2(360

0
)/7-1, = 120

0
  

 

TRAVELING –SALESMAN PROBLEM : 

A problem closely related to the question of Hamiltonian circuits is the traveling sales man problem, 

stated as follows:  A sales man is required to visit a number of cities during a trip, given the distances 

between the cities, in what order should be travel so as to visit every city precisely once and return 

home, with the minimum mileage traveled ? 

Representing the cities by vertices and the roads between them by edges, we get a graph.  In this graph, 

with every edge ei there is associated a real number (the distance in miles, say), w(ei) such a graph is 

called a weighted graph; w(ei) being the weight of edge ei. 

In our problem, if each of the cities has a road to every other city, we have a ‗complete weighted 

graph‘.  This graph has numerous Hamiltonian circuits, and we are to pick the one that has the smallest 

sum of distances (or weights) 

The total number of different (not edge - disjoint, of course) Hamiltonian circuits in a complete 

graph of n vertices can be shown to be (n-1)!/2.   

This follows from the fact that starting from any vertex we have n-1 edges to choose from the 

first vertex, n-2 from the second, n-3 from the third, and so on.  These being independent choices. 
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Fig. 2.15 

We get (n-1)! possible number of choices.  This number is, however, divided by 2, because each 

Hamiltonian circuit has been counted twice.  

Theoretically, the problem of the traveling salesman can always be solved by enumerating all (n-

1)! /2 Hamiltonian circuits, calculating the distance traveled in each, and then picking the shortest one.  

However for a large value of n, the labor involved is too great even for a digital computer (try solving it 

for the 50 state capitals in the united states: n = 50). 

 

Various types of walks 

Discussed in this chapter are summarized in fig (2.14). The arrows point in the direction of increasing 

restriction. 

 

 

 

 

 

 

Fig. 2.14 Different Types of Walks 

GRAPH COLORING: 

Given a planar or non-planar graph G,  if we assign colors (colours) to its vertices in such a way 

that no two adjacent vertices have (receive) the some color , then we say that the graph G is Properly 

colored.   

In otherwords, proper coloring of a graph means assigning colors to its vertices such that 

adjacent vertices have different colors. 

 

 

 

 

 

 

In fig. (2.15), the first two graphs are properly colored where as the third graph is not properly 

colored. 
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Fig. 2.16 
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By Examining the first two graphs in fig (2.15) which are properly colored , we note the 

following  

i)  A graph can have more than one proper coloring. 

ii) Two non–adjacent vertices in a properly colored graph can have the same color. 

 

CHROMATIC NUMBER: 

A graph G is said to be K–colorable if we can properly color it with K (number of) colors. 

A graph G which is K–colorable but not (K-1) – colorable is called a  

„K – Chromatic graph‟. 

In otherwords, a K–Chromatic graph is a graph that can be properly colored with K colors but 

not with less than K colors. 

If a graph G is K–Chromatic, then K is called the chromatic number of G.  Thus, the chromatic 

number of a graph is the minimum number of colors with which the graph can be properly colored. The 

chromatic number of a graph G is usually denoted by  χ (G). 

SOME RESULTS: 

i) A graph consisting of only isolated vertices (ie., Null graph) is 1–Chromatic (Because no two 

vertices of such a graph are adjacent and therefore we can assign the same color to all vertices).  

ii) A graph with one or more edges is at least 2 -chromatic (Because such a graph has at least one 

pair of adjacent vertices which should have different colors). 

iii) If a graph G contains a graph G1 as a    

      subgraph, then 

           χ (G) ≥ χ (G1). 

iv. If G is a graph of n vertices, then χ (G) ≤  n. 

v.    χ (Kn) = n, for all n ≥ 1. (Because, in Kn,  every two vertices are adjacent and as such all the n 

vertices should have different colors) 

vi.   If a graph G contains Kn as a subgraph, then χ (G) ≥  n. 

Example 1:  Find the chromatic number of each of the following graphs. 
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Solution :   

i) For the graph (a), let us assign a color  to the vertex V1, then for a proper coloring, we have to assign 

a different color to its neighbors V2,V4,V6, since V2, V4, V6 are mutually non-adjacent vertices, they can 

have the same color as V1,  namely . 

 Thus, the graph can be properly colored with at lest two colors, with the vertices V1,V3,V5 

having one color  and V2,V4,V6 having a different color  β . Hence, the chromatic number of the graph 

is 2. 

ii) For the graph (b) , let us assign the color  to the vertex V1.  Then for a proper coloring its 

neighbours V2,V3 & V4 cannot have the color .   

Further more, V2, V3,V4 must have different colors, say β, γ, δ .Thus, at least four colors are 

required for a proper coloring of the graph.   

Hence the chromatic number of the graph is 4.  

iii) For the graph (c) , we can assign the same color, say , to the non-adjacent vertices V1, V3, V5.   

Then the vertices V2,V4,V6 consequently V7 and V8 can be assigned the same color which is 

different from both  and β .  Thus, a minimum of three colors are needed for a proper coloring of the 

graph. Hence its chromatic number is 3. 

Example 2:  Find the chromatic numbers of the following graphs. 

 

   Fig. 2.17 

 

 

 

 

 

 

Solution (i):   

We note that the graph (a) is the Peterson graph.  By observing the graph, we note that the 

vertices V1,V3,V6 and V7 can be assigned the same color, say  .  Then the vertices V2,V4, V8 and V10 

can be assigned the same color,  β (other than ) .  Now, the vertices V5 and V9 have to be assigned 

colors other than  and β ;  they can have the same color γ. Thus, a minimum of three colors are 

required for a proper coloring of this graph.  Hence, the chromatic number of this graph is 3. 

Fig. 2.17 (b)
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Solution (ii) :  

By observing the graph (b),(this graph is called the Herscher graph),we note that the vertices 

V1, V3, V5, V6 and V11 can be assigned the same color  and all the remaining vertices: V2,V4, V7,V8, V9 

and V10 can be assigned the same color β  (other than ).  Thus two colors are sufficient  

(one color is not sufficient ) for proper coloring of the graph.  Hence its chromatic number is 2. 

Example (3):   

Prove that a graph of order n (≥ 2) consisting of a single cycle is 2–chromatic if n is even and 3 – 

chromatic if n is odd. 

Solution:   

The graph being considered is shown as below. 

 

 

 

 

 

 

Obviously, the graph cannot be properly colored with a single color.  Assign two colors 

alternatively to the vertices, starting with V1.  Then, the odd vertices, V1, V3, V5 etc., will have a color  

and the even vertices V2, V4, V6 will have a different color β.  Suppose n is even, then the vertex Vn is 

an even vertex and therefore will have the color β, and the graph gets properly colored  therefore, the 

graph is 2–chromatic 

Suppose n is odd, then the vertex Vn is an odd vertex and therefore will have the color  and the 

graph is not properly colored (because, then the adjacent vertices Vn and V1   will have the same color 

).  To make it properly colored, it is enough if Vn is a assigned a third color,  γ.  Thus, in this case, the 

graph is 3-chromatic. 

?
?

?

?

?

? ?

?

?

?

v1

v2
v3

vn

Vn-1

Fig. 2.18
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Example 4:   

Prove that a graph G is 2–chromatic if and only if it is non – null bipartite graph. 

Solution:     

Suppose a graph G is 2 - chromatic.  Then it is non-null and some vertices of G have one color, 

say  and the rest of the vertices have another color, say β .Let V1 be the set of vertices having color  

and V2 be the set of vertices having color β .Then V1U V2 = V.  The vertex set of G , and V1∩ V2 = Ф . 

Also, no two vertices of V1 can be adjacent and no two vertices of V2 can be adjacent. As such, every 

edge in G has one end in V1 and the other end in V2. Hence G is bipartite graph. 

Conversely, suppose G is a non- null bipartite graph. Then the vertex set of G has two bipartites 

V1 and V2 such that every edge in G has one end in V1 and another end in V2. Consequently, G cannot 

be properly colored with one color ; because then vertices in V1 and V2 will have the same color and 

every edge has both of its ends of the same color. Suppose we assign a color  to all vertices in V1 and a 

different color β  to all vertices in V2.  This will make a proper coloring of V. Hence  G is 2- Chromatic. 

Example 5 :   

If  (G) is the maximum of the degrees  of the vertices of a graph G, then prove that  χ (G) ≤  1+ 

 (G).      …………..    (i) 

Solution:   

Suppose G contains n = 2 vertices,   then the degrees of both the vertices is 1, so that    (G) =1 

,also χ (G) =2 .Hence χ (G) = 1+  (G).       

Thus, the required inequality (i) is verified for n=2. 

Assume that the inequality is true for all graphs with K- vertices.  Consider a graph G΄ with K + 1 

vertices.  If we remove any vertex v from G΄ then the resulting graph H will have K vertices  and  (H) 

≤ (G΄)  . since H has K vertices, the inequality (i) holds for H (by the assumption made).  Therefore, χ 

(H) ≤  1+  (H). since   (H) ≤ (G΄),  this yields χ (H) ≤ 1+(G΄)            

Now, a proper coloring of G΄ can be achieved by retaining the colors assigned to the vertices in 

H and by assigning a color to V that is different from the colors assigned to the vertices adjacent to it. 
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The color  to be assigned to V  can be one of the colors already assigned to a vertex in H that is 

not  adjacent to V.  Thus, a proper  

Coloring of G΄can be done without the use of a new color. 

Hence χ (G‘) =  χ (H) ≤  1+ (G‘). 

Thus, if the inequality (1) holds for all graphs with K vertices, it holds for a graph with K + 1 

vertices.Hence, by induction, it follows that the inequality (1) holds for all graphs . 

 

EULER‟S FORMULA 

If G is a planar graph, then G can be represented by a diagram in a plane. In which the edges 

meet only at the vertices.  Such a diagram divides the plane in to a number of parts called regions (or 

faces), of which exactly one part is unbounded.  The number of edges that form the boundary of a region 

is called the degree of that region. 

For example, in the diagram of a planar graph shown in fig. (2.20) the diagram divides the plane 

into 6 regions R1,R2,R3,R4,R5,R6. We observe that each of the regions R1 to R5 is bounded and the region 

R6 is unbounded. That is, R1 to R5 are in the interior of the graph while  R6 is in the Exterior. 

 

 

 

 

 

 

 

We further observe that, the fig (2.20) the boundary of the region R1 is made up of two edges.  

Therefore, the degree of R1 is 2.  We write this as d(R1) = 2.  The boundary of each of the regions R2 and 

.

.
.

.

V2

V4

V1

V V3

.

.
.

V1
V3

V2

V4

Fig. (a): G’ Fig. (b): H

R1

R2

R3

R6

R5

R4

? ?

?

? ?

?

Fig. 2.20
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R4 is made up of 3 edges; therefore, d(R2) = d(R4) = 3.  The boundary of the region R3 consists of 4 

edges of which one is pendant edge. 

Therefore, d(R3) =5. The region R5 is bounded by a single edge (loop) therefore, d(R5)=1.The 

boundary of the exterior region R6 consists of six edges;therefore,d(R6) = 6. 

We note that 

d(R1) +d(R2) +d(R3)+d(R4)+d(R5)+d(R6)=20. 

Which is twice the number of edges in the graph. This  property is analogous to the handshaking 

property and is true for all planar graphs. 

It should be pointed out that the regions are determined by a diagram of a planar graph and not 

by the graph itself. This means that if we change the diagram of the graph, the regions determined by the 

new diagram will be generally different from those determined by the old one in the sense that the 

unbounded region in the old diagram need not be unbounded in the new diagram. However, the 

interesting fact is that the total number of regions  in the two diagrams remains the same.  

The proof of this fact is contained in the following Euler‟s fundamental theorem on planar 

graphs.  

 

 

 

 

 

 

 

Now, assume that the theorem holds for all graphs with m=k number of edges, where k is a non-

negative integer. 

Consider a graph Gk+1 with k +1 edges and n vertices.  First, suppose that Gk+1 has no cycles in it. 

Then a diagram of Gk+1 will be of the form shown in fig. 2.21 (b) in which the number of vertices will be 

exactly one more than the number of edges, and the diagram will determine only one region–the entire 

plane region (as in fig. 2.21 (b)).  Thus for G k+1, we have, in this case, n = (k+1)+1 and r = 1, so that 

n – (k+1)+r = 2. 

This means that the result (i) is true when m=k+ 1 as well, if G k+1 contains no cycles in it. 

Fig. 2.21 
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Next, suppose GK+1 contains at least one cycle. Let r be the number of regions which a diagram 

of Gk+1 determine.  Consider an edge ‗e ‗ in a cycle and remove it from Gk+1. The resulting graph, Gk+1 – 

e, will have n vertices and (k+1)–1=k edges, and its diagram will determine  r-1 regions.  Since Gk+1 – e 

has k edges, the theorem holds for this graph (by the induction assumption made).  

That is we have 

r -  1 = k – n +2,  or n – (k + 1)+r  = 2 

This means that in this case also the result (1) is true when m = k + 1 as well. 

Hence, by induction, it follows that the result (1) is true for all non– negative integers m.  This 

completes the proof of the theorem. 

Corollary I :    

If G is connected simple planar graph with n( ≥3) vertices, m (>2) edges and r regions, then     (i)   

m ≥  (3/2)r    and  (ii) m ≤ 3n-6. 

Proof:  

Since the graph G is simple, it has no multiple edges and no loops. As such, every region must be 

bounded by three or more edges. Therefore, the total number of edges that bound all the regions is 

greater then or equal to 3r.On the other hand, an edge is in the boundary of at most two regions. 

Therefore, the total number of edges that bound all regions is less than or equal to 2m.Thus,3r ≤ 2m. or    

m ≥ (3/2)r  

This is required result (i) . 

Now, substituting for r from Euler‘s formula in the result just proved, we get m ≥  3 / 2  (m-n+2) 

Which simplifies to m ≤ 3n-6. This is required result (ii) 

Corollary 2:   

Kuratowski‘s first graph, K5, is non-planar. 

Proof:  

The graph K5 is simple, connected and has n = 5 vertices and m = 10 edges; refer to figure 

Kuratowski‘s first graph.  If this graph is planar, then by result (ii) of Corollary 1, we should have m  ≤  

3n – 6; that is 10 ≤ 15 - 6, which is not true.  Therefore, K5 is non – planar 

Corollary 3:   

Kuratowski‘s second graph, K3,3, is non-planar. 

Proof: We first note that  K3,3 is simple, connected and has n = 6 vertices and m = 9 edges; see fig 

Kuratowski‘s second graph. 



Graph Theory and combinatorics                  10CS42 
 

Dept of CSE, SJBIT  49 
 

Suppose K3,3 is planar.  By examining the figure Kuratowski‘s graph, we note that K3,3 has no cycles of 

length 3.  Therefore by result (iii) of Corollary 1, we should have m  ≤  2n – 4; that is, 9 ≤ 12 – 4, which 

is not true.  Hence, K3,3 is non – planar. 

Corollary 4:  

Every connected simple planar graph G contains a vertex of degree less than 6. 

 Proof:  

Suppose every vertex of G is of degree greater  than or eual to 6.Then,if d1,d2,……dn   are the 

degrees of the n vertices of G,we have d1 ≥ 6, d2 ≥ 6,……. dn ≥ 6. 

Adding these, we get  

d1+d2+……+dn    ≥ 6 n.        

By handshaking property, the  left hand side of this inequality is equal to 2m,where m is the 

number of edges inG,thus,2m ≥6n, or   3n  ≤   m. 

On the other hand ,by the result(ii)of corollary 1,(Result (ii) ie m≤ 3n-6). 

We should  have  m ≤  3n-6.Thus, 3n  ≤   m ≤ 3n-6.This cannot be true. 

Therefore, G must have a vertex of degree less than 6. 

Example 1:   

Verify Euler‘s formula for the planar graph shown in figure 2.20. 

Solution:  

The given graph has n=6 vertices, m=10 edges and r=6 regions. Thus,  

n –m + r = 6 – 10 + 6 = 2. 

The Euler‘s formula is thus verified for the given graph.  

Example 2:   

Verify Euler‘s formula for the planar graphs shown below: 

 

 

 

 

 

Fig. 2.22 

 

Solution:   

Fig. (a) Fig. (b) 
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Fig. 2.23 

We observe that the first of the given graphs has n = 17 vertices, m = 34 edges and r = 19 

regions.  Thus, n – m + r = 17 - 34 + 19 = 2. 

In the second of the given graphs, there are n = 10 vertices, m = 24 edges and r = 16 regions, so that n – 

m + r = 10 – 24 + 16 = 12. 

Thus, for both of the given graphs, Euler‘s formula is verified. 

Example 3:   

For the diagram of a planar graph shown below, find the degrees of regions and verify that the 

sum of these degrees is equal to twice the number of edges 

 

 

 

 

 

Solution:  

The diagram has 9 edges and 4 regions.  The region R1 is bound by three edges.  Therefore, 

d(R1)=3. Similarly, d(R2)=5, d(R3)=3. 

The infinite region R4 is bound by 5 edges plus a pendant edge. Therefore,d(R4)=7. (Recall that 

while determining the degree of a region, a pendant edge is counted twice).   

Accordingly,  

d (R1) + d (R2) + d (R3) + d (R4)  =  18 

                                       = twice the no. of edges. 

Example 4:  

A connected planar graph has 9 vertices with degrees 2,2,3,3,3,4,5,6,6.Find the number of 

regions of G.  

Solution:  

The  given graph has n = 9 vertices. Let m be the number of edges and r be the number of 

regions. 

Therefore by the Handshaking property, we have 

2m = sum of degrees of vertices 

    = 2+2+3+3+3+4+5+6+6 

    = 34. 
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Therefore, m = 17. 

By using Euler‘s formula, we find that 

     r = m - n + 2. 

       = 17-9+2 = 10 

Thus, the given graph has 10 regions. 

Example 5:   

Show that every connected simple planar graph G with less than 12 vertices must have a vertex 

of degree ≤ 4. 

Solution:   

Suppose every vertex of G has degree greater than 4.  Then, if d1, d2, d3 d4, ……….. dn  are the 

degrees of n vertices of G, we have  

d1  ≥ 5, d2 ≥5,……  dn  ≥ 5  so that,        

d1+ d2+ d3 +d4 ………….. dn  ≥ 5n,  or 2m  ≥ 5n,by hand shaking property, 

or 5n / 2   ≤  m…………(i) 

On the other hand, Corollary 1 requires m ≤ 3n-6. Thus, we should have, in view of (i),  5n/2 ≤ 

3n–6  or n ≥ 12……..(ii) 

Thus, if every vertex of G has degree greater than 4, then G must have at least 12 vertices.  

Hence, if G has less than 12 vertices, it must have a vertex of degree ≤  4. 

 

2.5.1 Chromatic Polynominals: 

Given a connected graph G & λ number of different colors, let us take up the problem of finding 

the number of different ways of properly coloring G with these λ colors. 

First, consider the null graph Nn with n vertices.  In this graph, no two vertices are adjacent.  

Therefore, a proper coloring of this graph can be done by assigning a single color to all the vertices.  

Thus, if there are λ number of colors, each vertex of the graph has λ possible choices of colors assigned 

to it, and as such the graph can be properly colored in λ
n
  different ways 

Next consider the complete graph Kn. In this graph, every two vertices are adjacent, and as such 

there must be at least n colors for a proper coloring of the graph. If the number of different colors 

available is λ, then the number of ways of properly coloring Kn is  

(i) Zero if λ < n,   

(ii) One if  λ = n,  
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(iii) Greater than 1 if λ >n.   

 

Let v1, v2, v3….vn be the vertices of Kn and suppose  λ > n.   

For a proper coloring of Kn, the vertex v1 can be assigned any of the λ colors, the vertex v2 can 

be assigned any of the remaining   λ - 1 colors, the vertex v3 can be assigned any of the remaining    λ - 2 

colors and finally the vertex vn can be assigned any of the    λ - n+1 colors.  Thus, Kn can be profperly 

colored in λ (λ -1)( λ -2) ... (λ –n+1) different ways if  λ >n.  

Lastly, consider the graph Ln which is a path consisting of n vertices v1, v2, v3….vn shown 

below: 

 

 

 

 

 

 

This graph cannot be properly colored with one color, but can be properly colored with 2 colors 

– by assigning one color to v1, v3, v5……..   and another color to v2, v4, v6…. Suppose there are λ ≥ 2 

number of colors available.  Then, for a proper coloring of the graph, the vertex v1 can be assigned any 

one of the λ colors and each of the remaining vertices can be assigned any one of λ-1 colors.   

(Bear in mind that alternative vertices can have the same color).  Thus, the graph Ln can be 

properly colored in λ(λ-1)
n-1

 different ways. 

The number of different ways of properly coloring a graph G with λ number of colors is denoted 

by P(G, λ).  Thus, from what is seen in the above three illustrate examples, we note that 

(i) P(Nn, λ) = λ
n
, 

(ii) P(Kn, λ) = 0 if λ < n, 

 P(Kn, n) = 1 if λ = n, and 

    P(Kn, λ) = λ (λ -1)( λ -2) ... (λ –n+1) if λ > n , 

(iii) P(Ln, λ) = λ (λ -1)
n-1 

if λ ≥  2 , 

We observe that in each of the above cases,    P(G, λ) is a polynominal.  Motivated by these cases, we 

take that P(G, λ) is polynomial for all connected graph G.  This polynomial is called the Chromatic 

Polynomial. 

It follows that if a graph G is made up of n parts, G1,G2….Gn, then P(G, λ)  is given by the following 

Figure 2.44

v1

v2 v3 v4

Vn-1

vn
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Figure 2.45  

Ge Ge` ( a=b) 

PRODUCT RULE: 

P (G, λ) = P (G1, λ). P (G2, λ)………. P (Gn, λ) 

In particular, If G is made up of two parts G1  and  G2, then we have P(G, λ) =P (G1, λ).  

P (G2, λ)     so that 

                  P (G2, λ) = P (G, λ) / P (G1, λ) 

 

DECOMPOSITION THEOREM: 

Let G be a graph and e = {a,b} be an edge of G.  Let Ge = G – e be that subgraph of G which is 

obtained by deleting e from G without deleting vertices a and b*.  Suppose we construct a new graph 

Ge‘ by coalescing (identifying / merging) the vertices a and b in Ge.  Then Ge‘ is subgraph of Ge as well 

as G. 

The process of obtaining Ge and Ge‘ from G is illustrated in Figure 2.45. 

 

 

 

 

 

The following theorem called the Decomposition theorem for chromatic polynomials given an 

expression for P (G, λ) in terms of P (Ge, λ) and P (Ge‘, λ) for a connected graph G. 

Theorem 1: 

If G is a connected graph and e = {a,b} is an edge of G, then 

                P (Ge, λ) = P (G, λ) + P (Ge‘, λ)  

Proof:  In a proper coloring of Ge, the vertices a and b can have the same color or different colors.  In 

every proper coloring of G, the vertices a and b have different colors and in every proper coloring of Ge‘ 

these vertices have the same color.  Therefore, the number of proper colorings of Ge is the sum of the 

number of proper colorings of G and the number of proper colorings of Ge‘. That is,      P (Ge, λ) = P (G, 

λ) + P (Ge‘, λ) 

This completes the proof of the theorm. 
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MULTIPLICATION THEOREM 

The following theorem gives an expression for P(G, λ) for a special class of graphs. 

Theorem 2:   If a graph G has sub graphs G1 and G2 such that G1UG2 = G and G1∩G2 = Kn for some 

posistive intger n, then 

P (G, λ) = P (G1, λ) . P (G2, λ) / λ
(n)

 

Where λ
(n) 

=  λ (λ -1)( λ -2) ... (λ –n+1)  

Given λ > n number of different colors, there are λ(n) = λ (λ -1) (λ -1) ( λ -2) …..... (λ –n+1) number of 

proper colorings of Kn.  For each of these λ(n) proper colorings of Kn, the product rule yields P 

(G1,λ)/λ
(n) 

ways of properly coloring the remaining vertices of G1.  Similarly, there are P (G2, λ)/λ
(n) 

ways 

of properly coloring the remaining vertices of G. As such  

P(G, λ) = P(Kn, λ) . P(G1, λ) / λ
(n).

P(G2, λ) / λ
(n)

 

     = λ
(n) 

. P (G1, λ) / λ
(n)  

. P (G2, λ) / λ
(n)

 

     = P (G1, λ)  . P (G2, λ) / λ
(n)

 

This completes the proof of the theorem. 

 

 (a) consider the graph K2,3 shown in Figure 2.47.  Let λ denote the  number of colors available to 

properly color the vertices of this graph.  Find: 

(i)  how many proper colorings of the graph have vertices a, b colored the same. 

(ii) how many proper colorings of the graph have vertices a,b colored with different colors. 

(iii) The chromatic polynomial of the graph. 

(b) For the graph K2,n what is the chromatic polynomial? 

 

 

 

 

 

(a): (i) If the vertices a and b are to have the same color, then there are λ choices for coloring the vertex 

a and only one choice for the vertex b (or vice versa). Consequently, there are λ–1 choices for 

each of the vertices x,y,z. Hence, the number of proper colorings (in this case) is λ (λ-1)
3
 

a

x

y

b
z

Figure 2.47 
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(ii) If the vertices a and b are to have different colors, then there are λ choices for coloring the 

vertex a and λ-1 choices for the vertex b (or vice versa).  Consequently, there are λ–2 choices for 

each of the vertices x,y,z. Hence the number of proper colorings (in this case) is λ (λ-1) (λ-2)
3
. 

(iii) Since the two cases of the vertices a and b have the same color or different colors are 

exhaustive and mutually exclusive, the chromatic polynomial of the graph is 

P(K2,3, λ) = λ (λ-1)
3
 + λ(λ-1) (λ-2)

3
. 

(b): Let V1 = {a,b} and V2 = {x1,x2,x3,………xn} be the two bipartites of K2,n.  Then, if a and b are to 

have the same color, the number of proper colorings of K2,n is λ (λ-1)
n
 as in case (i) above, If a 

and b are to have different colors, the number of proper colorings is λ(λ-1)(λ-2)
n
,  

as in case (ii) above.  Consequently, the chromatic polynomial for K2,n is 

 

P(K2,n, λ) = λ (λ-1)
n 

+ λ(λ-1) (λ-2)
n
 . 

 

Example 4:  Find the chromatic polynomial for the cycle C4 of length 4. 

 

 

 

 

 

 

 

A cycle of length 4, namely C4, is shown in Figure 2.48.  Let us redesignate it as G and denote 

the edge {v2,v3} as e.  Then the graph Ge and Ge‘ would be as shown below.. 

 

 

 

 

 

We note that the graph Ge is a path with 4 vertices.  Therefore, P(Ge, λ) = λ (λ-1)
3
  Also, the 

graph Ge‘ is the graph K3.  Therefore P(Ge‘, λ) =λ(λ-1)(λ-2)Accordingly, using the decomposition 

theorem, we find that 

v1

v4

v2

v3

Figure 2.48

v1

v4

v2

v3Ge

v1

v4

v2 (=v3)

Ge’

Fig. 2.49
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P(C4, λ) = P(G,λ) = P(Ge, λ) - P(Ge‘, λ) 

       = λ (λ-1)
3
 - λ (λ-1) (λ-2)  

       = λ
4
 – 4 λ

3
 + 6 λ

2
 -3 λ . 

This is the chromatic polynomial for the given cycle. 

Example 5:  Find the chromatic polynomial for the graph shown below.  If 5 colors are available, in 

how many ways can the vertices of this graph be properly colored?. 

 

 

 

 

 

Let us denote the given graph by G and the edge {v1,v2} by e.  Then the graph Ge and Ge‘ would be as 

shown in Figure 2.51. 

 

 

 

 

 

 

Let us redesignate the graph Ge as H and denote the edge {v1,v5} as f.  Then the graph Hf and Hf‗ 

would appear as shown below: 

 

 

 

 

 

 

 

Applying the decomposition theorem to the graphs G and H we note that 

P(G, λ)  = P(Ge,λ) - P(Ge‘, λ) 

      = P(H,λ) - P(Ge‘, λ) 

v5

v4

v2

v3

v1

Ge

v5

v4

v2=v1

v3
Ge’

Figure 2.51
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v 2 

v 3 
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Figure 2.52 
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Figure 2.50 
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      = { P(Hf,λ) - P(Hf‘, λ)} - P(Ge‘, λ) ------------- (1) 

 We observe that both of the graphs Ge‘ and Hf‘ are the graph K4 and the graph Hf is a 

deconnected graph having N1 ) - null graph of order 1 consisting of the single vertex v1) and K4 as 

components.  Accordingly, 

P(Ge‘, λ) = P(Hf‗ λ) = P(K4, λ) =  λ(λ-1) (λ-2) (λ-3) 

 And   P(Hf , λ) = P(N1, λ) . P(K4, λ) 

          =  λ. λ (λ-1) (λ-2) (λ-3). 

Consequently, expression (i) gives 

P(G, λ) =  λ. λ (λ-1) (λ-2) (λ-3) - 2 λ(λ-1) (λ-2) (λ-3) 

 = λ (λ-1) (λ-2) (λ-3) (λ-2) 

 = λ (λ-1) (λ-2)
2
 (λ-3). 

This is the chromatic polynomial for the given graph. 

For λ = 5, this polynomial gives 

P(G, λ) = 5 x 4 x 3
2
 x 2=360. 

This means that if 5 colors are available, the vertices of the graph can be properly colored in 360 

different ways. 

Example 6: Use  the multiplication  theorem to find P(G, λ) for the graph shown in Figure (2.50). 

The graph G in figure 2.50 can be regarded as the union of the graphs G1 and G2 shown in 

figures 2.53 (a) and 2.53(b) . 

 

 

 

 

 

Fig.2.53 

 

Then G1∩ G2  = {v5,v2}Shown in Figure 2.53 (c). 

WE note that G1 is the same as K3,G2 is the same as K4 and G1∩G2 is the same as K2. Hence, 

using the multiplication theorem (Theorem 2), we get 

P (G, λ) = P (G1, λ) . P (G2, λ) / λ
(2)

. 

             = P (K3, λ) . P (K4, λ) / λ
(2)

 

v4

v2

v3

(b):G2

v5

v5
v2

v1

(a):G1

v5 v2

(c):G1 n G2
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v1 

v2 

v5 

v4 v3 

Figure 2.54 

      = λ (λ-1) (λ-2) . λ(λ-1) (λ-2) (λ-3) / λ (λ-1) 

             = λ (λ-1) (λ-2)
2
 (λ-3) 

As the chromatic polynomial for the give G. (This result agrees with the result proved in example 5) 

Example 7:  Find the chromatic polynomial for the graph shown below: 

 

 

 

 

Let us denote the given graph by G and the edge {v1,v5} as e.  Then the graph Ge and Ge‘ would 

be as shown below. 

 

 

 

 

Let us redesignate Ge as H and denote the edge {v5,v2} by f.  Then the graphs Hf and Hf‘are as 

shown below. 

 

 

 

 

Now, we note that Hf‘ is the union of the cycles v1v4v2v1 and v2v3v4v2 each of which is the same 

as K3, and that the intersection of these cycles is the edge {v4,v2} which is the same as K2. Therefore, by 

the multiplication theorem, we have 

     P(Hf‘,λ)=P(K3, λ).P(K3,λ)/λ
(2)

 __________ (i) 

Similarly, 

    P(Ge‘,λ)=P(K3,λ).P(K3,λ)/λ
(2)  

__________ (ii) 

Next, we note that Hf is the union of the cycles v1v2v3v4v1and v5v3v4v5 and that the intersection of these 

cycles is the edge {v4,v3}.  The first of these cycles is C4, the second cycle is K3 and the edge {v4,v3} is 

K2.  Therefore, by the multiplication theorem, we have 

       P(Hf,λ)=P(C4,λ).P(K3,λ)/λ
(2)     

_________ (iii) 

Now, by using the decomposition theorem and the fact that H ≡Ge, we get. 

v1 v2

v5

v4 v3Hf

v1 v2(=v5)

v4 v3Hf’

Figure 2.56

v 2 

v 5 

v 4 v 3 
Figure 2.55 

G 
e 

v 2 
v 5 (=v 1 ) 

v 4 v 3 
G e ’ 

v 1 
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P (G, λ) = P (Ge, λ) - P(Ge‘, λ) 

    = P (H, λ) - P(Ge‘, λ) 

    = P (Hf, λ) - P(Hf‘, λ) - P(Ge‘, λ) 

    =1/λ
(2)

{P(C4,λ).P(K3,λ)-2P(K3,λ)P(K3,λ)},    

                                                       using (i) – (iii)  

    = P(K3,λ)/ λ
(2)

 { P(C4,λ) - 2P(K3,λ)} 

Using the result of Example 4 and the expressions for P(K3,λ) & λ
(2)

 this becomes 

P(G,λ) = λ(λ-1)(λ-2)/λ(λ-1){λ{λ(λ-1)
3
-(λ-1)(λ-2)}-2λ(λ-1)(λ-2)} 

  = λ (λ-1) (λ-2) { (λ-1)
2
 - 3(λ-2)} 

  = λ (λ-1) (λ-2) (λ
2
 - 5λ+7). 

Example 8: Let G = G(V,E) be a graph with a,b € V but {a,b} = e  E. Let Ge
+
 denote the graph 

obtained by including e into G and Ge
++ 

denote the graph obtained by coalescing (merging) the vertices 

a and b.  Prove that 

P(G, λ)= P (Ge
+
, λ) + P (Ge

++, 
λ) 

Hence find the chromatic polynomial for the graph shown in figure 2.57. 

 

 

 

 

 

 

Let us redesignate Ge
+ 

as H. Then, from the definitions of Ge
+ 

and Ge
++, 

we find that He = G and 

He‘ = Ge
++.  

Now, applying the decomposition theorem to H, we get 

P(He, λ)= P(H, λ) + P (He‘, λ) 

This is the same as  

P(G, λ)= P (Ge
+
, λ) + P (Ge

++
, λ) 

Which is the required result. 

For the graph G shown in figure 2.57 , if e = {V2 V4}, the graphs Ge
+
 and Ge

++ 
are as shown below: 

 

 

 

v1

v4

v2

v3

Figure 2.57

v 4 

v 2 

v 3 
G e + 

v 1 

v 4 = ‘ v 2 
v 3 

G e 
+ 

v 1 

Figure 2.58 



Graph Theory and combinatorics                  10CS42 
 

Dept of CSE, SJBIT  60 
 

 

 

We note that Ge
+ 

is K4 and Ge
++

 is K3,   Therefore, 

       P(Ge
+,

 λ)= P (K4, λ) = λ (λ-1) (λ-2) (λ-3)   

and P(Ge
++

, λ)= P (K3, λ) = λ (λ-1) (λ-2)  

 

Accordingly, the chromatic polynomial for the given graph is 

P(G, λ)= P (Ge
+
, λ) + P (Ge

++, 
λ) 

 = λ (λ-1) (λ-2) (λ-3)  + λ (λ-1) (λ-2) 

 = λ (λ-1) (λ-2)
2 
. 

Example 9: Prove the following: 

(a) for any graph G, the constant term in P(G, λ) is zero. 

(b) For any graph G = G(V,E) with \E\ ≥ 1,  the sum of the coefficients in P(G, λ) is zero. 

Solution:  

Let P(G, λ)= a0+a1 λ+ a2 λ2+…+ ar λr. Then  

P(G,0)= a0 & P(G,1)= a0+a1+ a2+……+ ar.  

(a)For any graph G, P(G,0) represents the number of ways of properly coloring G with zero number of 

colors.  Since a graph cannot be colored with no color on hand, it follows that P(G,0) = 0: that is a0 = 

0. 

(b) For any graph G, P(G,1) represents the number of ways of properly coloring G with 1 color.  If G has 

at least one edge, G cannot be properly colored with 1 color.  This means that, for G = G((V,E) with 

\E\ ≥ 1, we have 

P(G,1)= 0, that is, a0+a1+ a2+…………+ ar= 0. 

Exercises 

01.  Determine the chromatic polynomials for the graphs shown below:. 

 

 

 

 

 

Ans 1. λ (λ-1)
2
(λ-2) . 

(i) (ii) (iii) (iv) (v) (vi)

Figure 2.59
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Ans 2. λ (λ-1)
2
 (λ-2)

2
 . 

Ans 3. λ (λ-1) (λ-2) (λ
2
 - 2 λ+2) . 

Ans 4. λ (λ-1) (λ-2)
3
  

Ans 5. λ (λ-1) (λ-2) (2 λ-5). 

Ans 6. λ (λ-1)
2
 (λ-2)

2 
. 

 

02. If 4 colors are available, in how many different ways can the vertices of each graph in Figure 

2.59 be properly colored? 

Ans: (i) 72 (ii) 144  (iii) 240  (iv) 96  (v) 72  (vi) 144  

 

03.  For n≥ 3,Let Gn be the graph obtained by deleting one edge from Kn.  Determine P(Gn, λ) and χ(Gn). 

04.  If Cn denotes a cycle of length n≥ 3, prove that P(Cn, λ) = (λ-1)n+(-1)n(λ-1) 

05.  If Cn denotes a cycle of length n ≥ 4 , prove that P(Cn, λ) + P(Cn-1, λ) = λ(λ-1)
n-1 
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       UNIT 3 

TREES 

 

Graphs 

• Graph consists of two sets: set V of vertices and set E of edges.  

• Terminology: endpoints of the edge, loop edges, parallel edges, adjacent vertices, isolated vertex, 

subgraph, bridge edge 

• Directed graph (digraph) has each edge as an ordered pair of vertices 

Special Graphs 

• Simple graph is a graph without loop or parallel edges. A complete graph of n vertices Kn is a 

simple graph which has an edge between each pair of vertices. A complete bipartite graph of (n, 

m) vertices Kn,m is a simple graph consisting of vertices, v1, v2, …, vm and w1, w2, …, wn with 

the following properties: 

– There is an edge from each vertex vi to each vertex wj  

– There is no edge from any vertex vi to any vertex vj  

– There is no edge from any vertex wi to any vertex wj  

 

The Concept of Degree 

• The degree of a vertex deg(v) is a number of edges that have vertex v as an endpoint. Loop edge 

gives vertex a degree of 2. In any graph the sum of degrees of all vertices equals twice the 

number of edges. The total degree of a graph is even. In any graph there are even number of 

vertices of odd degree 

Paths and Circuits 

• A walk in a graph is an alternating sequence of adjacent vertices and edges. A path is a walk that 

does not contain a repeated edge. Simple path is a path that does not contain a repeated vertex. A 

closed walk is a walk that starts and ends at the same vertex. A circuit is a closed walk that does 

not contain a repeated edge. A simple circuit is a circuit which does not have a repeated vertex 

except for the first and last 

 

Connectedness 

• Two vertices of a graph are connected when there is a walk between two of them. The graph is 

called connected when any pair of its vertices is connected. If graph is connected, then any two 

vertices can be connected by a simple path. If two vertices are part of a circuit and one edge is 

removed from the circuit then there still exists a path between these two vertices. Graph H is 

called a connected component of graph G when H is a subgraph of G, H is connected and H is 

not a subgraph of any bigger connected graph. Any graph is a union of connected components 
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Euler Circuit 

• Euler circuit is a circuit that contains every vertex and every edge of a graph. Every edge is 

traversed exactly once. If a graph has Euler circuit then every vertex has even degree. If some 

vertex of a graph has odd degree then the graph does not have an Euler circuit. If every vertex of 

a graph has even degree and the graph is connected then the graph has an Euler circuit. A Euler 

path is a path between two vertices that contains all vertices and traverces all edge exactly ones. 

There is an Euler path between two vertices v and w iff vertices v and w have odd degrees and 

all other vertices have even degrees 

Hamiltonian Circuit 

Hamiltonian circuit is a simple circuit that contains all vertices of the graph (and each exactly 

once). Example: Traveling salesperson problem 

Trees 

• Connected graph without circuits is called a tree. Graph is called a forest when it does not have 

circuits. A vertex of degree 1 is called a terminal vertex or a leaf, the other vertices are called 

internal nodes. Examples: Decision tree, Syntactic derivation tree. 

• Any tree with more than one vertex has at least one vertex of degree 1. Any tree with n vertices 

has n – 1 edges. If a connected graph with n vertices has n – 1 edges, then it is a tree 

 

Rooted Trees 

• Rooted tree is a tree in which one vertex is distinguished and called a root. Level of a vertex is 

the number of edges between the vertex and the root. The height of a rooted tree is the maximum 

level of any vertex. Children, siblings and parent vertices in a rooted tree. Ancestor, descendant 

relationship between vertices 

Binary Trees 

• Binary tree is a rooted tree where each internal vertex has at most two children: left and right. 

Left and right subtrees.  

• Full binary tree: Representation of algebraic expressions 

• If T is a full binary tree with k internal vertices then T has a total of 2k + 1 vertices and k + 1 of 

them are leaves. Any binary tree with t leaves and height h satisfies the following inequality: t  

2
h 
 

Spanning Trees 

• A subgraph T of a graph G is called a spanning tree when T is a tree and contains all vertices of 

G. Every connected graph has a spanning tree. Any two spanning trees have the same number of 

edges. A weighted graph is a graph in which each edge has an associated real number weight. A 

minimal spanning tree (MST) is a spanning tree with the least total weight of its edges.  

Trees: Definition & Applications  

A tree is a connected graph with no cycles. A forest is a graph whose components are trees. An 

example appears below. Trees come up in many contexts: tournament brackets, family trees, 

organizational charts, and decision trees, being a few examples.  
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Directed Trees  

A directed tree is a digraph whose underlying graph is a tree and which has no loops and no pairs of 

vertices joined in both directions. These last two conditions mean that if we interpret a directed tree 

as a relation, it is irreflexive and asymmetric. Here is an example.  

 
Theorem: A tree T(V,E) with finite vertex set and at least one edge has at least two leaves (a leaf is a 

vertex with degree one). Proof: Fix a vertex a that is the endpoint of some edge. Move from a to the 

adjacent vertex along the edge. If that vertex has no adjacent vertices then it has degree one, so stop. 

If not, move along another edge to another vertex. Continue building a path in this fashion until you 

reach a vertex with no adjacent vertices besides the one you just came from. This is sure to happen 

because V is finite and you never use the same vertex twice in the path (since T is a tree). This 

produces one leaf. Now return to a. If it is a leaf, then you are done. If not, move along a different 

edge than the one at the first step above. Continue extending the path in that direction until you reach 

a leaf (which is sure to happen by the argument above).  

 

Trees: Leaves & Internal Vertices  

In the following tree the red vertices are leaves. We now know every finite tree with an edge has a 

least two leaves. The other vertices are internal vertices. 

 
 

• Theorem: Given vertices a and b in a tree T(V,E), there is a unique simple path from a to b. 

Proof: Trees are connected, so there is a simple path from a to b. The book gives a nice example 

of using the contrapositive to prove the rest of the theorem.  

• Theorem: Given a graph G(V,E) such that every pair of vertices is joined by a unique simple 

path, then G is a tree. This is the converse of Theorem 6.37. Proof: Since a simple path joins 

every pair of points, the graph is connected. Now suppose G has a cycle abc…a. Then ba and 

bc…a are distinct simple paths from b to a. This contradicts uniqueness of simple paths, so G 

cannot possess such a cycle. This makes G a tree.  
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Rooted Trees  

Sometimes it is useful to distinguish one vertex of a tree and call it the root of the tree. For instance 

we might, for whatever reasons, take the tree above and declare the red vertex to be its root. In that 

case we often redraw the tree to let it all ―hang down‖ from the root (or invert this picture so that it 

all ―grows up‖ from the root, which suits the metaphor better)  

 
 

Rooted Directed Trees  

It is sometimes useful to turn a rooted tree into a rooted directed tree T′ by directing every edge 

away from the root.  

 
Rooted trees and their derived rooted directed trees have some useful terminology, much of which is 

suggested by family trees. The level of a vertex is the length of the path from it to the root. The 

height of the tree is the length of the longest path from a leaf to the root. If there is a directed edge in 

T′ from a to b, then a is the parent of b and b is a child of a. If there are directed edges in T′ from a to 

b and c, then b and c are siblings. If there is a directed path from a to b, then a is an ancestor of b and 

b is a descendant of a.  

 

Binary & m-ary Trees 

We describe a directed tree as binary if no vertex has outdegree over 2. It is more common to call a 

tree binary if no vertex has degree over 3. (In general a tree is m-ary if no vertex has degree over 

m+1. Our book calls a directed tree m-ary if no vertex has outdegree over m.) The directed rooted 

tree above is 4-ary (I think the word is quaternary) since it has a vertex with outdegree 4. In a rooted 

binary tree (hanging down or growing up) one can describe each child vertex as the left child or right 

child of its parent.  

 

Trees: Edges in a Tree  

Theorem: A tree on n vertices has n–1 edges. Proof: Let T be a tree with n vertices. Make it rooted. 

Then every edge establishes a parent-child relationship between two vertices. Every child has 

exactly one parent, and every vertex except the root is a child. Therefore there is exactly one edge 

for each vertex but one. This means there are n–1 edges.  
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Theorem: If G(V,E) is a connected graph with n vertices and n–1 edges is a tree.  

Proof: Suppose G is as in the statement of the theorem, and suppose G has a cycle. Then we can 

remove an edge from the cycle without disconnecting G (see the next slide for why). If this makes G 

a tree, then stop. If not, there is still a cycle, so we can remove another edge without disconnecting 

G. Continue the process until the remaining graph is a tree. It still has n vertices, so it has n–1 edges 

by a prior theorem. This is a contradiction since G had n–1 vertices to start with. Therefore G has no 

cycle and is thus a tree.  

 

(Why can we remove an edge from a cycle without disconnecting the graph? Let a and b be vertices. 

There is a simple path from a to b. If the path involves no edges in the cycle, then the path from a to 

be is unchanged. If it involves edges in the cycle, let x and y be the first and last vertices in the cycle 

that are part of the path from a to b. So there is a path from a to x and a path from y to b. Since x and 

y are part of a cycle, there are at least simple two paths from x to y. If we remove an edge from the 

cycle, at least one of the paths still remains. Thus there is still a simple path from a to b.)  

 

Important Concepts, Formulas, and t heorems 

1. Graph.  A graph consists of a set of vertices  and a set of edges with the property that each edge 

has two (not necessarily different) vertices associated with it and called its endpoints. 

 

2. Edge;  Adjacent.  We say an edge in a graph joins  its endpoints, and we say two endpoints are 

adjacent  if they are joined by an edge. 

 

3. Incident.   When a vertex is an endpoint of an edge, we say the edge and the vertex are 

incident. 

 

4. Drawing of a Graph.  To draw a graph, we draw a point in the plane for each vertex, and then 

for each edge we draw a (possibly curved) line between the points that correspond to the endpoints 

of the edge. Lines that correspond to edges may only touch the vertices that are their endpoints. 

 

5. Simple Graph.  A simple graph is one that has at most one edge joining each pair of distinct 

vertices, and no edges joining a vertex to itself. 

 

6. Length,  Distance.  The length of a path is the number of edges. The distance  between two 

vertices in a graph is the length of a shortest path between them. 

 

7. Loop;  Multiple Edges.  An edge that joins a vertex to itself is called a loop and we say we have 

multiple edges between vertices x and y if there is more than one edge joining x and y. 
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8. Notation  for  a Graph.   We use the phrase ―Let G = (V, E)‖ as a shorthand for ―Let G 

stand for a graph with vertex set V and edge set E.‖ 

 

9. Notation  for Edges.  In a simple graph we use the notation {x, y} for an edge from x to y. 

In any graph, when we want to use a letter to denote an edge we use a Greek letter like 6 

so that we can save e to stand for the number of edges of the graph. 

 

10. Complete  Graph on fl vertices.   A complete  graph on fl vertices is a graph with fl vertices 

that has  an edge between each two of the vertices.  We use Km   to stand for a complete graph 

on fl vertices. 

 

11. Path.  We call an alternating sequence of vertices and edges in a graph a path if it starts and ends 

with a vertex, and each edge joins the vertex before it in the sequence to the vertex after it in 

the sequence. 

 

12. Simple Path.  A path is called a simple path if it has no repeated vertices or edges. 

 

 

13. Degree of a Vertex.  The degree of a vertex in a graph is the number of times it is incident with 

edges of the graph; that is, the degree of a vertex x is the number of edges from x to other vertices 

plus twice the number of loops at vertex x. 

 

14. Sum of Degrees of Vertices. The sum of the degrees of the vertices in a graph with a finite 

number of edges is twice the number of edges. 

 

15. Connected.  A graph is called connected  if there is a path between each two vertices of the 

graph.   We say two vertices are connected  if there is a path between  them, so a graph is 

connected if each two of its vertices are connected. The relationship of being connected is an 

equivalence relation on the vertices of a graph. 

 

16. Connected  Component.    If C is a subset of the vertex set of a graph, we use E(C) to stand 

for the set of all edges both of whose endpoints  are in C. The graph consisting of an equivalence 

class  C of the connectivity relation together with the edges E(C) is called a connected  

component  of our original graph. 

 

17. Closed Path.  A path that starts and ends at the same vertex is called a closed path. 

 

18. Cycle.  A closed path with at least one edge is called a cycle if, except for the last vertex, all of 

its vertices are different. 
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b 

19. Tree.  A connected graph with no cycles is called a tree. 

 

20. Important Properties  of Trees. 

 

(a)  There is a unique path between each two vertices in a tree. (b)  A 

tree on V vertices has V — 1 edges. 

(c)  Every finite tree with at least two vertices has a vertex of degree one. 

 

Rooted  trees 

 

A rooted tree consists of a tree with a  selected vertex, called a root,  in the tree. 

d   r b 

 

c a 

c f r 

a e f 

 

 

i  d  e  g h  
i 

g 

h   

1. Ancestor,  Descendant.   In a rooted tree with root r,  a vertex x is an ancestor of a vertex y, 

and vertex y is a descendant  of vertex x if x and y are different and x is on the unique path from 

the root to y. 

 

2. Parent,  Child.  In a rooted tree with root r, vertex x is a parent of vertex y and y is a child 

of vertex x in if x is the unique vertex adjacent to y on the unique path from r to y. 

 

3. Leaf  (External)  Vertex.  A vertex with no children in a rooted tree is called a leaf vertex or an 

external  vertex. 

 

4. Internal  Vertex.   A vertex of a rooted tree that is not a leaf vertex is called an internal 

vertex. 

 

5. Binary  Tree.  We recursively describe a binary tree as 

 

• an empty tree (a tree with no vertices), or 

• a structure T consisting of a root vertex, a binary tree called the left subtree of the root and 

a binary tree called the right subtree of the root. If the left or right subtree is nonempty, its 
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root node is joined by an edge to the root of T . 

 

6. Full Binary  Tree.  A binary tree is a full binary tree if each vertex has either two nonempty 

children or two empty children. 

 

7. Recursive  Definition of a Rooted  Tree.  The recursive definition of a rooted tree states that it is 

either a single vertex, called a root, or a graph consisting of a vertex called a root and a set of 

disjoint rooted trees, each of which has its root attached by an edge to the original root. 

 

Traversal Algorithms 

A traversal algorithm is a procedure for systematically visiting every vertex of an ordered binary tree 

• Tree traversals are defined recursively 

• Three commonly used traversals are: 

– preorder 

– inorder 

– postorder 

 

PREORDER Traversal Algorithm 

Let T be an ordered binary tree with root R 

If T has only R then 

R is the preorder traversal 

Else 

Let T1, T2 be the left and right subtrees at R 

Visit R 

Traverse T1 in preorder 

Traverse T2 in preorder 

 

INORDER Traversal Algorithm 

Let T be an ordered binary tree with root R 

If T has only R then 

R is the inorder traversal 

Else 

Let T1, T2 be the left and right subtrees at R 

Traverse T1 in inorder 

Visit R 

Traverse T2 in inorder 

 

POSTORDER Traversal Algorithm 

Let T be an ordered binary tree with root R 

If T has only R then 

R is the postorder traversal 
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Else 

Let T1, T2 be the left and right subtrees at R 

Traverse T1 in postorder 

Traverse T2 in postorder 

Visit R 

 

 
 

Constructing an  Optimal Huffman Code 

 An optimal Huffman  code is a Huffman code in which the average length  of the symbols is 

minimum.  In general an optimal Huffman code can be made as follows. First  we list the 

frequencies of all the codes and represent the  symbols as vertices  (which  at  the  end  will be 

leaves of a tree). Then we replace the two smallest frequencies f1  and f2  with their sum f1 + 

f2, and  join the  corresponding  two symbols to a common vertex above them  by two edges, one 

labeled 0 and  the  other  one labeled 1. Than common vertex plays the role of a new symbol with a 

frequency equal to f1 + f2.  Then we repeat the same operation with the resulting shorter  list of 

frequencies until the  list is reduced  to one element and the graph  obtained  becomes a tree. 

 

Spanning Trees of a Graph  

If G(V,E) is a graph and T(V,F) is a subgraph of G and is a tree, then T is a spanning tree of G. That 

is, T is a tree that includes every vertex of G and has only edges to be found in G. Using the 

procedure in the previous paragraph (remove edges from cycles until only a tree remains), we can 

easily prove that every connected graph has a spanning tree.  

 

 

c 

 

b h 
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d 

 

 

g  i 
e a f 

 

FIGURE  :   Spanning  tree. 

 

 

Every connected  graph has a spanning  tree which can be obtained by removing 

edges until the resulting  graph becomes acyclic. In prac- tice, however, removing 

edges is not efficient because finding cycles is time consuming. 

 

Next, we give two algorithms  to find the spanning tree T of a loop- free  

connected  undirected  graph  G  —  (V, E).  We  assume  that the vertices of 

G are given in a certain  order v1 , v2, . . . , vm . The  resulting spanning tree will be 

T — (V !, E!). 

 

 Breadth-First  Search Algorithm 

 The idea is to start  with vertex v1  as root, add the vertices that are adjacent to 

v1, then the ones that are adjacent to the latter  and have not been visited yet, and 

so on.  This algorithm  uses a queue (initially  empty)  to store vertices of the graph.  

In consists of the following: 

 

1. Add v1  to T , insert it in the queue and mark it as ―visited‖. 

2. If the queue is empty, then we are done. Otherwise let v be the 

vertex in the front of the queue. 

3. For  each vertex  v!  of G that has not  been visited  yet  and  is adjacent to v 

(there might be none) taken in order of increasing subscripts,  add vertex v!  

and edge (v, v!) to T , insert  v!  in the queue and mark it as ―visited‖. 

4. Delete v from the queue. 5. Go to tep22 

A pseudocode version of the algorithm  is as follows: 

 

1: procedure bfs(V,E) 

2: S := (v1) {ordered list of vertices of a fix level} 

3: V‘ := {v1}  {v1 is the root of the spanning tree} 
4: E‘ := {} {no edges in the spanning tree yet} 
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5: while true 

6: begin 

7: for each x in S, in order, 

8: for each y in V - V‘ 

9: if (x,y) is an edge then 

10: add edge (x,y) to E‘ and vertex y to V‘ 

11: if no edges were added then 

12: return T 

13: S := children of S 

14: end 

15: end bfs 

 

Figure below shows the spanning tree obtained using the breadth-first search  

algorithm  on the graph  with its vertices ordered  lexicographi- cally: a, b, c, d, e, f, 

g, h, i. 

 

c 

 

b h 

 

 

d 

 

 

g i e 

 

a f 

 

FIGURE    Breadth-First Search. 

 

Depth-First  Search Algorithm 

 The  idea of this  algo- rithm  is to make a path  as long as possible, and  then  

go back (back- track)  to add branches also as long as possible. 

 

This algorithm uses a stack (initially empty) to store vertices of the graph.  In 

consists of the following: 

 

1. Add v1  to T , insert it in the stack and mark it as ―visited‖. 
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2. If the stack is empty,  then  we are done. Otherwise let v be the vertex on 

the top of the stack. 

3. If there  is no vertex  v!  that is adjacent to v and  has not  been visited  yet,  

then  delete v and  go to step  2 (backtrack ).  Oth- erwise, let v!  be the first 

non-visited  vertex  that is adjacent to v. 

4. Add vertex  v!  and edge (v, v!) to T , insert  v!  in the  stack  and mark it as 

―visited‖. 

5. Go to step 2. 

 

 

An alternative  recursive definition is as follows.  We define recur- sively a 

process P  applied to a given vertex v in the following way: 

 

 

1. Add vertex v to T and mark it as ―visited‖. 

2. If there  is no vertex  v!  that is adjacent to v and  has not  been visited yet, 

then return. Otherwise, let v! be the first non-visited vertex that  is adjacent 

to v. 

3. Add the edge (v, v!) to T . 

4. Apply P  to v!. 

5. Go to step 2 (backtrack ). 

 

The Depth-First  Search Algorithm consists of applying the process just defined to 

v1. 

 

A pseudocode version of the algorithm  is as follows: 

 

1: procedure dfs(V,E) 

2: V‘ := {v1}  {v1 is the root of the spanning tree} 

3: E‘ := {} {no edges in the spanning tree yet} 

4: w := v1 

5: while true 

6: begin 

7: while there is an edge (w,v) that when added 

8: to T does not create a cycle in T 

9: begin 

10: Choose first v such that (w,v) 

11: does not create a cycle in T 
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12: add (w,v) to E‘ 

13: add v to V‘ 

14: w := v 

15: end 

16: if w = v1 then 

 

17: return T 

18: w := parent of w in T {backtrack} 

19: end 

20: end 

 

Figure  shows the spanning tree obtained using the breadth-first search  algorithm  

on the graph  with its vertices ordered  lexicographi- cally: a, b, c, d, e, f, g, h, i. 

 

 

 

 

  

 

 

 

FIGURE   Depth-First Search. 
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       UNIT 4 

Minimum spanning trees 

 

Let G = (V,E) be a connected graph and let l : E −→ R be a function, called the length 

function. For any subset F of E, the length l(F) of F is, by definition: 

l(F) := ∑e∈Fl(e). 

 

In this section we consider the problem of finding a spanning tree in G of minimum length. 

There is an easy algorithm for finding a minimum-length spanning tree, essentially due toBoruvka . 

There are a few variants. The first one we discuss is sometimes called the 

Dijkstra-Prim method. 

Choose a vertex v1 ∈ V arbitrarily. Determine edges e1,e2 ... successively as follows. 

Let U1 := {v1}. Suppose that, for some k ≥ 0, edges e1,...,ek have been chosen, spanning 

a tree on the set Uk. Choose an edge ek+1 ∈ δ(Uk) that has minimum length among all 

edges in δ(Uk).1 Let Uk+1 := Uk ∪ ek+1. 

By the connectedness of G we know that we can continue choosing such an edge until Uk = V . 

In that case the selected edges form a spanning tree T in G. This tree has 

minimum length, which can be seen as follows. 

Call a forest F greedy if there exists a minimum-length spanning tree T of G that 

contains F. 

 

Theorem:   Let F be a greedy forest, let U be one of its components, and let e ∈ δ(U). 

If e has minimum length among all edges in δ(U), then F ∪ {e} is again a greedy forest. 

Proof. Let T be a minimum-length spanning tree containing F. Let P be the unique path 

in T between the end vertices of e. Then P contains at least one edge f that belongs to 

δ(U). So T := (T \ {f}) ∪ {e} is a tree again. By assumption, l(e) ≤ l(f) and hence 

l(T ) ≤ l(T). Therefore, T is a minimum-length spanning tree. As F ∪ {e} ⊆ T , it follows 

that F ∪ {e} is greedy. 

 

Corollary : The Dijkstra-Prim method yields a spanning tree of minimum length. 

Proof. It follows inductively with Theorem above  that at each stage of the algorithm we have a greedy 

forest. Hence the final tree is greedy — equivalently, it has minimum length. 

The Dijkstra-Prim method is an example of a so-called greedy algorithm. We construct 

a spanning tree by throughout choosing an edge that seems the best at the moment. Finally 

we get a minimum-length spanning tree. Once an edge has been chosen, we never have to 

replace it by another edge (no ‗back-tracking‘).There is a slightly different method of finding a 

minimum-length spanning tree, Kruskal‘smethod . It is again a greedy algorithm, and again iteratively 

edges e1,e2,... are chosen, but by some different rule 
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Dijkstra's algorithm 

 

Dijkstra's algorithm, conceived by Dutch computer scientist Edsger Dijkstra in 1956 and 

published in 1959, is a graph search algorithm that solves the single-source shortest path problem for a 

graph with nonnegative edge path costs, producing a shortest path tree. This algorithm is often used in 

routing. An equivalent algorithm was developed by Edward F. Moore in 1957. 

For a given source vertex (node) in the graph, the algorithm finds the path with lowest cost (i.e. 

the shortest path) between that vertex and every other vertex. It can also be used for finding costs of 

shortest paths from a single vertex to a single destination vertex by stopping the algorithm once the 

shortest path to the destination vertex has been determined. For example, if the vertices of the graph 

represent cities and edge path costs represent driving distances between pairs of cities connected by a 

direct road, Dijkstra's algorithm can be used to find the shortest route between one city and all other 

cities. As a result, the shortest path first is widely used in network routing protocols, most notably IS-IS 

and OSPF (Open Shortest Path First). 

Algorithm 

Let the node at which we are starting be called the initial node. Let the distance of node Y be the 

distance from the initial node to Y. Dijkstra's algorithm will assign some initial distance values and will 

try to improve them step by step. 

1. Assign to every node a distance value: set it to zero for our initial node and to infinity for all 

other nodes. 

2. Mark all nodes as unvisited. Set initial node as current. 

3. For current node, consider all its unvisited neighbors and calculate their tentative distance (from 

the initial node). For example, if current node (A) has distance of 6, and an edge connecting it 

with another node (B) is 2, the distance to B through A will be 6+2=8. If this distance is less than 

the previously recorded distance (infinity in the beginning, zero for the initial node), overwrite 

the distance. 

4. When we are done considering all neighbors of the current node, mark it as visited. A visited 

node will not be checked ever again; its distance recorded now is final and minimal. 

5. If all nodes have been visited, finish. Otherwise, set the unvisited node with the smallest distance 

(from the initial node, considering all nodes in graph) as the next "current node" and continue 

from step 3. 

Description 

Note: For ease of understanding, this discussion uses the terms intersection, road and map — 

however, formally these terms are vertex, edge and graph, respectively. 

 

Suppose you want to find the shortest path between two intersections on a city map, a starting 

point and a destination. The order is conceptually simple: to start, mark the distance to every intersection 

http://en.wikipedia.org/wiki/Computer_scientist
http://en.wikipedia.org/wiki/Edsger_Dijkstra
http://en.wikipedia.org/wiki/Graph_search_algorithm
http://en.wikipedia.org/wiki/Shortest_path_problem
http://en.wikipedia.org/wiki/Graph_%28mathematics%29
http://en.wikipedia.org/wiki/Edge_%28graph_theory%29
http://en.wikipedia.org/wiki/Shortest_path_tree
http://en.wikipedia.org/wiki/Routing
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on the map with infinity. This is done not to imply there is an infinite distance, but to note that that 

intersection has not yet been visited. (Some variants of this method simply leave the intersection 

unlabeled.) Now, at each iteration, select a current intersection. For the first iteration the current 

intersection will be the starting point and the distance to it (the intersection's label) will be zero. For 

subsequent iterations (after the first) the current intersection will be the closest unvisited intersection to 

the starting point—this will be easy to find. 

From the current intersection, update the distance to every unvisited intersection that is directly 

connected to it. This is done by determining the sum of the distance between an unvisited intersection 

and the value of the current intersection, and relabeling the unvisited intersection with this value if it is 

less than its current value. In effect, the intersection is relabeled if the path to it through the current 

intersection is shorter than the previously known paths. To facilitate shortest path identification, in 

pencil, mark the road with an arrow pointing to the relabeled intersection if you label/relabel it, and 

erase all others pointing to it. After you have updated the distances to each neighboring intersection, 

mark the current intersection as visited and select the unvisited intersection with lowest distance (from 

the starting point) -- or lowest label—as the current intersection. Nodes marked as visited are labeled 

with the shortest path from the starting point to it and will not be revisited or returned to. 

Continue this process of updating the neighboring intersections with the shortest distances, then 

marking the current intersection as visited and moving onto the closest unvisited intersection until you 

have marked the destination as visited. Once you have marked the destination as visited (as is the case 

with any visited intersection) you have determined the shortest path to it, from the starting point, and can 

trace your way back, following the arrows in reverse. 

In the accompanying animated graphic, the starting and destination intersections are colored in 

light pink and blue and labelled a and b respectively. The visited intersections are colored in red, and the 

current intersection in a pale blue. 

Of note is the fact that this algorithm makes no attempt to direct "exploration" towards the 

destination as one might expect. Rather, the sole consideration in determining the next "current" 

intersection is its distance from the starting point. In some sense, this algorithm "expands outward" from 

the starting point, iteratively considering every node that is closer in terms of shortest path distance until 

it reaches the destination. When understood in this way, it is clear how the algorithm necessarily finds 

the shortest path, however it may also reveal one of the algorithm's weaknesses: its relative slowness in 

some topologies. 

Pseudocode 

In the following algorithm, the code u := vertex in Q with smallest dist[], searches for the vertex u in the 

vertex set Q that has the least dist[u] value. That vertex is removed from the set Q and returned to the 

user. dist_between(u, v) calculates the length between the two neighbor-nodes u and v. The variable alt 

on line 15 is the length of the path from the root node to the neighbor node v if it were to go through u. If 

this path is shorter than the current shortest path recorded for v, that current path is replaced with this alt 

http://en.wikipedia.org/wiki/Graph_labeling
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path. The previous array is populated with a pointer to the "next-hop" node on the source graph to get 

the shortest route to the source. 

 1  function Dijkstra(Graph, source): 

 2      for each vertex v in Graph:           // Initializations 

 3          dist[v] := infinity ;              // Unknown distance function from source to v 

 4          previous[v] := undefined ;         // Previous node in optimal path from source 

 5      end for ; 

 6      dist[source] := 0 ;                    // Distance from source to source 

 7      Q := the set of all nodes in Graph ; 

        // All nodes in the graph are unoptimized - thus are in Q 

 8      while Q is not empty:                 // The main loop 

 9          u := vertex in Q with smallest dist[] ; 

10          if dist[u] = infinity: 

11              break ;                        // all remaining vertices are inaccessible from source 

12          fi ; 

13          remove u from Q ; 

14          for each neighbor v of u:         // where v has not yet been removed from Q. 

15              alt := dist[u] + dist_between(u, v) ; 

16              if alt < dist[v]:             // Relax (u,v,a) 

17                  dist[v] := alt ; 

18                  previous[v] := u ; 

19              fi  ; 

20          end for ; 

21      end while ; 

22      return dist[] ; 

23  end Dijkstra. 
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If we are only interested in a shortest path between vertices source and target, we can terminate the 

search at line 13 if u = target. Now we can read the shortest path from source to target by iteration: 

1  S := empty sequence 

2  u := target 

3  while previous[u] is defined: 

4      insert u at the beginning of S 

5      u := previous[u] 

Now sequence S is the list of vertices constituting one of the shortest paths from target to source, 

or the empty sequence if no path exists. 

A more general problem would be to find all the shortest paths between source and target (there 

might be several different ones of the same length). Then instead of storing only a single node in each 

entry of previous[] we would store all nodes satisfying the relaxation condition. For example, if both r 

and source connect to target and both of them lie on different shortest paths through target (because the 

edge cost is the same in both cases), then we would add both r and source to previous[target]. When the 

algorithm completes, previous[] data structure will actually describe a graph that is a subset of the 

original graph with some edges removed. Its key property will be that if the algorithm was run with 

some starting node, then every path from that node to any other node in the new graph will be the 

shortest path between those nodes in the original graph, and all paths of that length from the original 

graph will be present in the new graph. Then to actually find all these short paths between two given 

nodes we would use a path finding algorithm on the new graph, such as depth-first search. 

 

 

Kruskal's algorithm 

Kruskal's algorithm is an algorithm in graph theory that finds a minimum spanning tree for a 

connected weighted graph. This means it finds a subset of the edges that forms a tree that includes every 

vertex, where the total weight of all the edges in the tree is minimized. If the graph is not connected, 

then it finds a minimum spanning forest (a minimum spanning tree for each connected component). 

Kruskal's algorithm is an example of a greedy algorithm. 
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Description 

 create a forest F (a set of trees), where each vertex in the graph is a separate tree 

 create a set S containing all the edges in the graph 

 while S is nonempty and F is not yet spanning  

o remove an edge with minimum weight from S 

o if that edge connects two different trees, then add it to the forest, combining two trees 

into a single tree 

o otherwise discard that edge. 

At the termination of the algorithm, the forest has only one component and forms a minimum spanning 

tree of the graph. 

Performance 

Where E is the number of edges in the graph and V is the number of vertices, Kruskal's algorithm can be 

shown to run in O(E log E) time, or equivalently, O(E log V) time, all with simple data structures. These 

running times are equivalent because: 

 E is at most V
2
 and logV

2
 = 2logV is O(log V). 

 If we ignore isolated vertices, which will each be their own component of the minimum spanning 

forest, V ≤ E+1, so log V is O(log E). 

We can achieve this bound as follows: first sort the edges by weight using a comparison sort in O(E log 

E) time; this allows the step "remove an edge with minimum weight from S" to operate in constant time. 

Next, we use a disjoint-set data structure (Union&Find) to keep track of which vertices are in which 

components. We need to perform O(E) operations, two 'find' operations and possibly one union for each 

edge. Even a simple disjoint-set data structure such as disjoint-set forests with union by rank can 

perform O(E) operations in O(E log V) time. Thus the total time is O(E log E) = O(E log V). 

Provided that the edges are either already sorted or can be sorted in linear time (for example with 

counting sort or radix sort), the algorithm can use more sophisticated disjoint-set data structure to run in 

O(E α(V)) time, where α is the extremely slowly-growing inverse of the single-valued Ackermann 

function. 

Pseudocode 

 1  function Kruskal(G = <N, A>: graph; length: A → R
+
): set of edges  

 2    Define an elementary cluster C(v) ← {v}. 

 3    Initialize a priority queue Q to contain all edges in G, using the weights as keys. 

 4    Define a forest T ← Ø       //T will ultimately contain the edges of the MST 

 5     // n is total number of vertices 

 6    while T has fewer than n-1 edges do 
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 7      // edge u,v is the minimum weighted route from u to v 

 8      (u,v) ← Q.removeMin() 

 9      // prevent cycles in T. add u,v only if T does not already contain a path between u and v.  

10      // the vertices has been added to the tree. 

11      Let C(v) be the cluster containing v, and let C(u) be the cluster containing u. 

13      if C(v) ≠ C(u) then 

14        Add edge (v,u) to T. 

15        Merge C(v) and C(u) into one cluster, that is, union C(v) and C(u). 

16    return tree T 

 

 



Graph Theory and combinatorics                  10CS42 
 

Dept of CSE, SJBIT  82 
 

 

 

 

Proof of correctness 

The proof consists of two parts. First, it is proved that the algorithm produces a spanning tree. Second, it 

is proved that the constructed spanning tree is of minimal weight. 

 Spanning tree 

Let P be a connected, weighted graph and let Y be the subgraph of P produced by the algorithm. Y 

cannot have a cycle, since the last edge added to that cycle would have been within one subtree and not 

between two different trees. Y cannot be disconnected, since the first encountered edge that joins two 

components of Y would have been added by the algorithm. Thus, Y is a spanning tree of P. 
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 Minimality 

We show that the following proposition P is true by induction: If F is the set of edges chosen at any 

stage of the algorithm, there is some minimum spanning tree that contains F. 

 Clearly P is true at the beginning, when F is empty: any minimum spanning tree will do. 

 Now assume P is true for some non-final edge set F and let T be a minimum spanning tree that 

contains F. If the next chosen edge e is also in T, then P is true for F+e. Otherwise, T+e has a 

cycle C and there is another edge f that is in C but not F. Then T-f+e is a tree, and its weight is 

not more than the weight of T since otherwise the algorithm would choose f in preference to e. 

So T-f+e is a minimum spanning tree containing F+e and again P holds. 

 Therefore, by the principle of induction, P holds when F has become a spanning tree, which is 

only possible if F is a minimum spanning tree itself. 

 

Prim's algorithm 

In computer science, Prim's algorithm is an algorithm that finds a minimum spanning tree for a 

connected weighted undirected graph. This means it finds a subset of the edges that forms a 

tree that includes every vertex, where the total weight of all the edges in the tree is minimized. 

Prim's algorithm is an example of a greedy algorithm. 

Description 

Prim's algorithm has many applications, such as in maze generation. 

The only spanning tree of the empty graph (with an empty vertex set) is again the empty graph. The 

following description assumes that this special case is handled separately. 

The algorithm continuously increases the size of a tree, one edge at a time, starting with a tree consisting 

of a single vertex, until it spans all vertices. 

 Input: A non-empty connected weighted graph with vertices V and edges E (the weights can be 

negative). 

 Initialize: Vnew = {x}, where x is an arbitrary node (starting point) from V, Enew = {} 

 Repeat until Vnew = V:  

o Choose an edge (u, v) with minimal weight such that u is in Vnew and v is not (if there are 

multiple edges with the same weight, any of them may be picked) 

o Add v to Vnew, and (u, v) to Enew 

 Output: Vnew and Enew describe a minimal spanning tree 
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Max-flow min-cut theorem 

In optimization theory, the max-flow min-cut theorem states that in a flow network, the maximum 

amount of flow passing from the source to the sink is equal to the minimum capacity which when 

removed in a specific way from the network causes the situation that no flow can pass from the source to 

the sink. 

Definition 

Let N = (V,E) be a network (directed graph) with s and t being the source and the sink of N respectively. 

The capacity of an edge is a mapping c: E→R
+
, denoted by cuv or c(u,v). It represents the 

maximum amount of flow that can pass through an edge. 

A flow is a mapping f: E→R
+
, denoted by fuv or f(u,v), subject to the following two constraints:  

1. for each (capacity constraint) 

2. for each (conservation of 

flows). 

The value of flow is defined by | f | = Σv∈Vfsv, where s is the source of N. It represents the amount 

of flow passing from the source to the sink. 

The maximum flow problem is to maximize | f |, that is, to route as much flow as possible from s to the 

t. 

An s-t cut C = (S,T) is a partition of V such that s∈S and t∈T. The cut-set of C is the set 

{(u,v)∈E | u∈S, v∈T}. Note that if the edges in the cut-set of C are removed, | f | = 0. 
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The capacity of an s-t cut is defined by . 

The minimum cut problem is to minimize c(S,T), that is, to determine S and T such that the capacity of 

the S-T cut is minimal. 

Statement 

The max-flow min-cut theorem states 

The maximum value of an s-t flow is equal to the minimum capacity of an s-t cut. 

Example 

 
A network with the value of flow equal to the capacity of an s-t cut 

The figure above  is a network having a value of flow of 7. The vertex in white and the vertices in grey 

form the subsets S and T of an s-t cut, whose cut-set contains the dashed edges. Since the capacity of the 

s-t cut is 7, which is equal to the value of flow, the max-flow min-cut theorem tells us that the value of 

flow and the capacity of the s-t cut are both optimal in this network. 

Application 

Generalized max-flow min-cut theorem 

In addition to edge capacity, consider there is capacity at each vertex, that is, a mapping c: V→R
+
, 

denoted by c(v), such that the flow f has to satisfy not only the capacity constraint and the conservation 

of flows, but also the vertex capacity constraint 

for each  

In other words, the amount of flow passing through a vertex cannot exceed its capacity. Define an s-t cut 

to be the set of vertices and edges such that for any path from s to t, the path contains a member of the 

cut. In this case, the capacity of the cut is the sum the capacity of each edge and vertex in it. 

In this new definition, the generalized max-flow min-cut theorem states that the maximum value of an 

s-t flow is equal to the minimum capacity of an s-t cut in the new sense. 

Matching theory 
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In the mathematical discipline of graph theory, a matching or independent edge set in a graph is a 

set of edges without common vertices. It may also be an entire graph consisting of edges 

without common vertices. 

Definition 

Given a graph G = (V,E), a matching M in G is a set of pairwise non-adjacent edges; that is, no two 

edges share a common vertex. 

A vertex is matched (or saturated) if it is incident to an edge in the matching. Otherwise the vertex is 

unmatched. 

A maximal matching is a matching M of a graph G with the property that if any edge not in M is added 

to M, it is no longer a matching, that is, M is maximal if it is not a proper subset of any other matching 

in graph G. In other words, a matching M of a graph G is maximal if every edge in G has a non-empty 

intersection with at least one edge in M. The following figure shows examples of maximal matchings 

(red) in three graphs. 

 
A maximum matching is a matching that contains the largest possible number of edges. There may be 

many maximum matchings. The matching number ν(G) of a graph G is the size of a maximum 

matching. Note that every maximum matching is maximal, but not every maximal matching is a 

maximum matching. The following figure shows examples of maximum matchings in three graphs. 

 
A perfect matching (a.k.a. 1-factor) is a matching which matches all vertices of the graph. That is, 

every vertex of the graph is incident to exactly one edge of the matching. Figure (b) above is an example 

of a perfect matching. Every perfect matching is maximum and hence maximal. In some literature, the 

term complete matching is used. In the above figure, only part (b) shows a perfect matching. A perfect 

matching is also a minimum-size edge cover. Thus, , that is, the size of a maximum 

matching is no larger than the size of a minimum edge cover. 

A near-perfect matching is one in which exactly one vertex is unmatched. This can only occur when 

the graph has an odd number of vertices, and such a matching must be maximum. In the above figure, 

part (c) shows a near-perfect matching. If, for every vertex in a graph, there is a near-perfect matching 

that omits only that vertex, the graph is also called factor-critical. 

Given a matching M, 

http://en.wikipedia.org/wiki/Mathematical
http://en.wikipedia.org/wiki/Graph_theory
http://en.wikipedia.org/wiki/Graph_%28mathematics%29
http://en.wikipedia.org/wiki/Edge_%28graph_theory%29
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http://en.wikipedia.org/wiki/Graph_%28mathematics%29
http://en.wikipedia.org/wiki/Non-adjacent
http://en.wikipedia.org/wiki/1-factor
http://en.wikipedia.org/wiki/Incidence_%28geometry%29
http://en.wikipedia.org/wiki/Edge_cover
http://en.wikipedia.org/wiki/Odd_number
http://en.wikipedia.org/wiki/Factor-critical_graph
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 an alternating path is a path in which the edges belong alternatively to the matching and not to 

the matching. 

 an augmenting path is an alternating path that starts from and ends on free (unmatched) 

vertices. 

One can prove that a matching is maximum if and only if it does not have any augmenting path. 

Properties 

In any graph without isolated vertices, the sum of the matching number and the edge covering number 

equals the number of vertices.[1] If there is a perfect matching, then both the matching number and the 

edge cover number are |V|/2. 

If A and B are two maximal matchings, then |A| ≤ 2|B| and |B| ≤ 2|A|. To see this, observe that each edge 

in A \ B can be adjacent to at most two edges in B \ A because B is a matching. Since each edge in B \ A 

is adjacent to an edge in A \ B by maximality, we see that 

 
Further we get that 

 
In particular, this shows that any maximal matching is a 2-approximation of a maximum matching and 

also a 2-approximation of a minimum maximal matching. This inequality is tight: for example, if G is a 

path with 3 edges and 4 nodes, the size of a minimum maximal matching is 1 and the size of a maximum 

matching is 2. 

Matching polynomials 

Main article: Matching polynomial 

A generating function of the number of k-edge matchings in a graph is called a matching polynomial. 

Let G be a graph and mk be the number of k-edge matchings. One matching polynomial of G is 

 
Another definition gives the matching polynomial as 

 
where n is the number of vertices in the graph. Each type has its uses; for more information see the 

article on matching polynomials. 

Maximum matchings in bipartite graphs 

Matching problems are often concerned with bipartite graphs. Finding a maximum bipartite matching 

(often called a maximum cardinality bipartite matching) in a bipartite graph G = (V = (X,Y),E) is 

perhaps the simplest problem. The augmenting path algorithm finds it by finding an augmenting path 

from each to Y and adding it to the matching if it exists. As each path can be found in O(E) 

http://en.wikipedia.org/wiki/Edge_covering_number
http://en.wikipedia.org/wiki/Matching_polynomial
http://en.wikipedia.org/wiki/Generating_function
http://en.wikipedia.org/wiki/Bipartite_graph
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time, the running time is O(VE). This solution is equivalent to adding a super source s with edges to all 

vertices in X, and a super sink t with edges from all vertices in Y, and finding a maximal flow from s to 

t. All edges with flow from X to Y then constitute a maximum matching. An improvement over this is 

the Hopcroft-Karp algorithm, which runs in time. Another approach is based on the fast 

matrix multiplication algorithm and gives O(V
2.376

) complexity, which is better in theory for sufficiently 

dense graphs, but in practice the algorithm is slower. 

In a weighted bipartite graph, each edge has an associated value. A maximum weighted bipartite 

matching[2] is defined as a perfect matching where the sum of the values of the edges in the matching 

have a maximal value. If the graph is not complete bipartite, missing edges are inserted with value zero. 

Finding such a matching is known as the assignment problem. It can be solved by using a modified 

shortest path search in the augmenting path algorithm. If the Bellman-Ford algorithm is used, the 

running time becomes O(V
2
E), or the edge cost can be shifted with a potential to achieve O(V

2
log(V) + 

VE) running time with the Dijkstra algorithm and Fibonacci heap. The remarkable Hungarian algorithm 

solves the assignment problem and it was one of the beginnings of combinatorial optimization 

algorithms. The original approach of this algorithm need O(V
2
E) running time, but it could be improved 

to O(V
2
log(V) + VE) time with extensive use of priority queues. 

 Maximum matchings 

There is a polynomial time algorithm to find a maximum matching or a maximum weight matching in a 

graph that is not bipartite; it is due to Jack Edmonds, is called the paths, trees, and flowers method or 

simply Edmonds's algorithm, and uses bidirected edges. A generalization of the same technique can also 

be used to find maximum independent sets in claw-free graphs. Edmonds' algorithm has subsequently 

been improved to run in time time, matching the time for bipartite maximum matching.  

Another algorithm by Mucha and Sankowski[3], based on the fast matrix multiplication algorithm, gives 

O(V
2.376

) complexity. 

Maximal matchings 

A maximal matching can be found with a simple greedy algorithm. A maximum matching is also a 

maximal matching, and hence it is possible to find a largest maximal matching in polynomial time. 

However, no polynomial-time algorithm is known for finding a minimum maximal matching, that is, a 

maximal matching that contains the smallest possible number of edges. Note that a maximal matching 

with k edges is an edge dominating set with k edges. Conversely, if we are given a minimum edge 

dominating set with k edges, we can construct a maximal matching with k edges in polynomial time. 

Therefore the problem of finding a minimum maximal matching is essentially equal to the problem of 

finding a minimum edge dominating set. Both of these two optimisation problems are known to be NP-

hard; the decision versions of these problems are classical examples of NP-complete problems.[6] Both 

problems can be approximated within factor 2 in polynomial time: simply find an arbitrary maximal 

matching M. 
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       UNIT 5 

 

Fundamental Principles of Counting 

 

The Rules of Sum and Product 

 

Our study of discrete and combinatorial mathematics beings with two basic principles of counting: the 

rules of sum and product. The statements and initial applications of these rules appear quite simple. In 

analyzing more complicated problems, one is often able to break down such problems into parts that can 

be solved using these basic Principles. We want to develop the ability to ―decompose‖ such problems 

and piece together our partial solutions in order to arrive at the final answer. A good way to do this is to 

analyze and solve many diverse enumeration problems, Taking note of the principles being used. This is 

the approach we shall follow here. 

Our first principle of counting can be stated as follows: 

 

The Rule of Sum: 

 

If a first task can be performed in m ways, while a second task can be performed in n ways, and the two 

tasks cannot be performed simultaneously, then performing either task can be accomplished in any of m 

+ n ways. 

 

Note that when we say that a particular occurrence, such as a first task, can come about in m ways, these 

m ways are assumed to be distinct, unless a statement is made to the contrary. This will be true 

throughout the entire text. 

 

Example 1.1 

A College library has 40 textbooks on sociology and 50 textbooks dealing with anthropology. By the 

rule of sum, a student at this college can select among 40 + 50 = 90 textbooks in order to learn more 

about one or the other of these two subjects. 

 

Example 1.2 

The rule can be extended beyond two tasks as long as no pair of tasks can occur simultaneously. For 

instance, a computer science instructor who has, say, seven different introductory books each on C++, 

Java and Perl can recommend any one of these 21 books to a student who is interested in learning a first 

programming language. 

 

Example 1.3 

The computer science instructor of Example 1.2 has two colleagues. One of three colleagues has three 

textbooks on the analysis of algorithms, and the other has five such textbooks. If n denotes the 
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maximum number of different books on this topic that this instructor can borrow from them, then 5 ≤ n 

≤ 8, for here both colleagues may own copies of the same textbook(s). 

 

Example 1.4 

Suppose a university representative is to be chosen either from 200 teaching or 300 non-teaching 

employees, and then there are 200 + 300 = 500 possible ways to choose this representative. 

 

Extension of Sum Rule: 

If tasks T1, T2,……., Tm  can be done in n1,n2,……, nm ways respectively and no two of these tasks can 

be performed at the same time, then the number of ways to do one of these tasks is n1 + n2 + …. + nm. 

 

Example 1.5 

If a student can chose a project either 20 from mathematics or 35 from computer science or 15 from 

engineering, then the student can choose a project 20 + 35 + 15 = 70 ways. 

 

The following example introduces our second principle of counting. 

 

Example 1.6 

In trying to reach a decision on plant expansion, an administrator assigns 12 of her employees to two 

committees. Committee A consists of five members and is to investigate possible favorable results from 

such an expansion. The other seven employees, committee B, will scrutinize possible unfavorable 

repercussions. Should the administrator decide to speak to just one committee member before making 

her decision, then by the rule of sum there are 12 employees she can call upon for input. However, to be 

a bit more unbiased, she decides to speak with a member of committee B on Tuesday, before reaching a 

decision. Using the following principle, we find that she can select two such employees to speak with in 

5 X 7 = 35 ways. 

 

The rule of Product:  

 

If a procedure can be broken down into first and second stages, and if there are m possible outcomes for 

the first stage and if, for each of these outcomes, there are n possible outcomes for the second stage, then 

the total procedure can be carried out, in the designated order, in mn ways. 

 

Example 1.7 

 

The drama club of Central University is holding tryouts for a spring play. With six men and eight 

women auditioning for the leading male and female roles, by the rule of product the director can cast his 

leading couple in 6 X 8 = 48 ways. 
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Example 1.8 

 

Here various extensions of the rule are illustrated by considering the manufacture of license plates 

consisting of two letters followed by four digits.  

 

a) If no letter or digit can be repeated, there are 26 X 25 X 10 X 9 X 8 X 7 =  3,276,000 different 

possible plates. 

 

b) With repetitions of letters and digits allowed, 26 X 26 X 10 X 10 X 10 X 10 = 

     6,760,000 different license plates are possible. 

 

c) If repetitions are allowed, as in part (b), how many of the plates have only vowels  

    (A, E, I, O, U) and even digits? (0 is an even integer) 

 

Example 1.9 

 

In order to store data, a computer‘s main memory contains a large collection of circuits, each of which is 

capable of storing a bit –– that is, one of the binary digits 0 or 1. These storage circuits are arranged in 

units called (memory) cells. To identify the cells in a computer‘s main memory, each is assigned a 

unique name called its address. For some computer‘s, such as embedded microcontrollers (as found in 

the ignition system for an automobile), an address is represented by an ordered list of eight bits, 

collectively referred to as a byte. Using the rule of  product, there are 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 = 2
8
  = 

256 such bytes. So we have 256 addresses that may be used for cells where certain information may be 

stored. 

A kitchen appliance, such as a microwave oven, incorporates an embedded microcontroller. These 

―small computers‖ (such as the PICmicro microcontroller) contain thousands of memory cells and use 

two-byte addresses to identify these cells in their main memory. Such addresses are made up of two 

consecutive bytes, or 16 consecutive bits. Thus there are 256 X 256 = 2
8
 X 2

8
 = 2

16
 = 65,536 available 

address that could be used to identifying cells in main memory. Other computers use addressing systems 

of four bytes. This 32-bit architecture is presently used in the Pentium processor, where there are as 

many as      2
8
 X 2

8
 X 2

8
 X 2

8
 = 232 = 4,294,967,296 addresses for use in identifying the cells in main 

memory. When a programmer deals with the UltraSPARC or Itanium processors, he or she considers 

memory cells with eight-byte addresses. Each of these addresses comprises 8 X 8 = 64 bits, and there are 

2
64

 = 18,446,744,073,709,551,616 possible addresses for this architecture. (Of course, not all of these 

possibilities are actually used.) 

 

Example 1.10 

 

At times it is necessary to combine several different counting principles in the Solution of one problem. 

Here we find that the rules of both sum and product are needed to attain the answer. 
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At the AWL Corporation Mrs. Foster operates the Quick Snack Coffee Shop. The menu at her shop is 

limited: six kinds of muffins, eight kinds of sandwiches, and five beverages (hot coffee, hot tea, cola, 

and orange juice). Ms. Dodd, an editor at AWL, sends her assistant Carl to the shop to get her lunch –– 

either a muffin and a hot beverage or a sandwich and a cold beverage. 

By the rule of product, there are 6 X 2 = 12 ways in which Carl can purchase a muffin and hot beverage. 

A second application of this rule shows that there are 8 X 3 = 24 possibilities for a sandwich and cold 

beverage. So by the rule of sum, there are 12 + 24 = 36 ways in which Carl can purchase Ms. Dodd‘s 

lunch.   

 

Example 1.11 

 

A tourist can travel from Hyderabad to Tirupati in four ways (by plane, train, bus or taxi). He can then 

travel from Tirupati to Tirumala hills in five ways (by RTC bus, taxi, rope way, motorcycle or walk). 

Then the tourist can travel from Hyderabad to Tirumala hills in 4 X 5 = 20 ways. 

 

 

Extension of Product Rule: Suppose a procedure consists of performing tasks T1 , T2 , . . . , Tm in order. 

Suppose task  Ti can be performed in ni ways after the tasks T1 , T2  , . . . ,  Ti-1 are performed, then the 

number of ways the procedure can be executed in the designated order is n1 , n2 , n3 , . . . , nm 

Example 1.12 

 

―Charmas‖ brand shirt available in 12 colors has a male and female version. It comes in four sizes for 

each sex, comes in three makes of economy, standard and luxury. Then the numbers of different types of 

shirts produced are 12 X 2 X 4 X 3 = 288. 

 

Example 1.13 

 

If there are 18 boys and 12 girls in a class, there are 18 + 12 = 30 ways of selecting 1 student (either a 

boy or a girl) as class representative. 

 

Example 1.14 

 

Suppose E is the event of selecting a prime number less than 10 and F is the event of selecting an even 

number less than 10. then E can happen in 4 ways. But, because 2 is an even prime, E and F can happen 

in only 4 + 4 – 1 = 7 ways. 

 

Example 1.15 

 

A bookshelf holds 6 different English books, 8 different French books, and 10 different German books. 

There are (i) (8) (9) (10) = 480 ways of selecting 3 books, 1 in each language; (ii) 6 + 8 + 10 = 24 ways 

of selecting 1 book in any one of languages. 
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Example 1.16 

 

The scenario is as in Example 1.15. An English book and a French book can be selected in (6) (8) = 48 

ways; an English book and a German book, in (6) (10) = 60 ways; a French book and a German book, in 

(8) (10) = 80 ways. Thus there are 48 + 60 + 80 = 188 ways of selecting 2 books in 2 languages. 

Example 1.17 

 

If each of the 8 questions in a multiple-choice examination has 3 answers (1 correct and 2 wrong), the 

number of ways of answering all questions is 38 = 6561. 

 

Example 1.18 

 

There are P(6, 6) = 720 6-letter ―words‖ that can be made from the letters of word NUMBER, and there 

are P(6, 4) = 6!/2! = 360 4-letter ―words‖. An unordered selection of r out of the n elements of X is 

called an r-combination of X. In other words, any subset of X with r elements is an r-combination of X. 

The number of r-combinations or r-subsets of a set of n distinct objects is denoted by C (n, r) (“n 

choose r”). For each r-subset of X  there is unique complementary (n – r)-subset, whence the important 

relation C (n, r) = C (n, n – r). To evaluate C (n, r), note that an r-permutation of an n-set X is 

necessarily a permutation of some r-subset of X. Moreover distinct r-subsets generate distinct r-

permutations. Hence, by the sum rule, 

 

   P(n, r) = P(r, r) + P(r, r)+…+ P(r, r) 

 

The number of terms on the right is the number of r-subset of X; i.e. C (n, r). Thus  

P (n, r)-subset, whence the important relation C (n, r) = C (n, n – r). 

 

Example 1.19 

 

From a class consisting of 12 computer science majors, 10 mathematics majors, and 9 statistics majors, a 

committee of 4 computer science majors, 4 mathematics majors, and 3 statistics majors is to be formed. 

There are  

 

 

 

 

Ways of choosing 4 computer science majors, C(10, 4) = 210 ways of choosing 4 mathematics majors, 

and C(9, 3)+ 84 ways of choosing 3 statistics majors. By the product rule, the number of ways of 

forming a committee is thus (495)(210)(84) = 8,731,800. 

 

 

4959.5.11
1.2.3.4

9.10.11.12

!8!4

!12
)4,12( C
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Example 1.20 

 

Refer to Example 1.18 in how many ways can a committee consisting of 6 or 9 members be formed such 

that all 3 majors are equally represented? 

 

A committee of 6(with 2 from each group) can be formed in C(12,2).C(10,2).C(9,2) = 106,920 ways. 

The number of ways of forming a committee of 9 (with 3 from each group) is C(12,3).C(10,3).C(9,3) = 

2,217,600. Then, by the sum rule the number of ways of forming a committee is 106,920 + 2,217,600 = 

2,324,520. 

 

Example 1.21 

 

There are 15 married couples in a party. Find the number of ways of choosing a woman and a man from 

the party such that the two are (a) married to each other, (b) not married to each other. 

 

(a) A woman can be chosen in 15 ways. Once a woman is chosen, her husband automatically chosen. So 

the number of ways of choosing a married couple is 15. 

(b) A woman can be chosen in 15 ways. Among the 15 men in the party, one is her husband. Out of the 

14 other men, one can be chosen in 14 ways. The product rule the gives (15)(14) = 210 ways. 

 

Example 1.22 

 

Find the number of (a) 2-digit even numbers, (b) 2-digit odd numbers, (c) 2-digit odd numbers with 

distinct digits, and (d) 2-digit even numbers with distinct digits. 

 

Let E be the event of choosing a digit for the units‘ position, and F  be the event  choosing a digit for the 

tens‘ position. 

 

(a) E can be done in 5 ways; F can be done in 9 ways. The number of ways of doing F does not depend 

upon how E is done; hence, the sequence {E, F} can be done in (5)(9) = 45 ways. 

 

(b) The argument is as in (a): there are 45 2-digit odd numbers. 

 

(c) If F is done first, the number of ways of doing E depends upon how F was done; so we cannot apply 

the product rule to the sequence {F, E}. But we can apply the product rule to the sequence {E, F}. 

There are 5 choices for the units‘ digit, and for each of these there are 8 choices for the tens‘ digit. So 

the sequence {E, F} can be done in 40 ways; i.e., there are 40 2-digit odd numbers with distinct digits. 

 

(d) We distinguish two cases. If the units‘ digit is 0-which can be accomplished in 1 way-the tens‘ digit 

can be chosen in 9 ways. If 2,4,6, or 8 is chosen as units‘ digit, the tens‘ digit can be chosen in 8 ways. 

Thus the sum and product rules give a total of (1)(9)+(4)(8) = 41 ways. 
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Example 1.23 

 

A computer password consists of  a letter of the alphabet followed by 3 or 4 digits. Find 

 

(a) the total number of passwords that can be created, and (b) the number of Passwords in which no digit 

repeats. 

 

(a) The number of 4-charcter passwords is (26)(10)(10)(10), and the number of 5-charcter passwords is 

(26)(10)(10)(10)(10), by the product rule. So the total number of passwords is 26,000 + 260,000 = 

286,000, by the sum rule. 

 

(b) The number of 4-charcter passwords is (26)(10)(9)(8) = 18,720, the number of  5-charcter passwords 

is (26)(10)(9)(8)(7) = 131,040, for a total of 149,760. 

 

 

Example 1.24 

 

How many among the first 100,000 positive integers contain exactly one 3, one 4, and one 5 in their 

decimal representation? 

 

It is clear that we may consider instead the 5-place numbers 00000 through 99999. The digit 3 can be in 

any one of the 5 places. Subsequently the digit 4 can be in any one of the remaining places. Then the 

digit 5 can be in one of 3 places. There are 2 places left, either of which may be filled by 7 digits. Thus 

there are (5)(4)(3)(7)(7) = 2940 integers in the desired category. 

 

Example 1.25 

 

Find the number of 3-digit even numbers with no repeated digits. 

 

By problem 1.21(d), the hundreds‘ and units‘ positions can be simultaneously filled in 41 ways. For 

each of these ways, the tens‘ position can be filled in 8 ways. Hence the desired number is (41)(8) = 

328ways. 

 

Example 1.26 

 

A palindrome is a finite sequence of characters that reads the same forwards and backwards 

[GNUDUNG]. Find the numbers of 7-digit and 8-digit palindromes, under the restriction that no digit 

may appear more than twice. 

 

By the mirror-symmetry of a palindrome (of length n), only the first└(n+1)/2┘Positions need be 

considered. In our case this number is 4 for both lengths. Since the first digit may not be 0, there are 9 
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ways to fill the first position. There are then 10-1 = 9 ways to fill the second position; 10-2 = 8 ways for 

the third; 10-3 = 7 ways for the fourth. Thus there are (9)(9)(8)(7) = 4536 palindromic numbers of either 

length. 

 

Example 1.27 

 

In a binary palindrome the first digits is 1 and each succeeding digit may be 0 or 1. Count the binary 

palindromes of length n. 

 

See problem 1.25. Here we have └(n+1)/2┘-1 = └(n-1)/2┘ free positions, so the desired number is  

 

Example 1.28 

 

Find the number of proper divisors of 441,000. (A proper divisor of positive integer n is any divisor 

other than 1 and n) 

 

Any integer can be uniquely expressed as product of powers of prime numbers; thus, 441,000 = 

(2
3
)(3

2
)(5

3
)(7

2
). Any divisor, proper or improper, of given number must be of the form (2

a
)(3

b
)(5

c
)(7

d
), 

where 0≤a≤3, 0≤b≤2, 0≤c≤3, and 0≤d≤2. in this paradigm the exponent a can be chosen in 4 ways; b in 3 

ways; c in 4 ways; d in 3 ways. So, by the product rule, the total number of proper divisors will be 

(4)(3)(4)(3) – 2 = 142. 

 

Example 1.29 

 

In a binary sequence every element is 0 or 1. Let X be the set of all binary sequences of length n. A 

switching function (Boolean function) of n variables is A function from X to the set Y = {0, 1}. Find the 

number of distinct switching functions of n variables. 

  

The cardinality of X is r = 2
n
. So the number of switching functions is 2

r
. 

 

1.2 Permutations 

 

Continuing to examine applications of rule of product, we turn now to counting linear arrangements of 

objects. These arrangements are often called permutations when the objects are distinct. We shall 

develop some systematic methods for dealing with linear arrangements, starting with a typical example. 

 

Example 1.14  

 

In class of 10 students, five are to be chosen and seated in a row for a picture. How many such linear 

arrangements are possible? 
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The key word here is arrangement, which designates the importance of order. If A, B, C, . . ., I, J denote 

the 10 students, then BCEFI, CEFIB, and ABCFG are there such different arrangements, even though 

the first two involve the same five students. 

 

To answer this question, we consider the positions and possible numbers of students we can choose in 

order to fill each position. The filling of position is a stage of our procedure. 

 

   10 X 9 X  8    X  7 X 6 

   1st             2nd                 3rd                  4th                   5th  

                     position         position         position           position           position   

 

 

Each of the 10 students can occupy the 1st position in the row. Because repetitions are not possible here, 

we can select only one of the nine remaining students to fill the 2
nd

 position. Continuing in this way, we 

find only six students to select from in order to fill the 5
th
 and final position. This yields a total of 30,240 

possible arrangements of five students selected from the class of 10. 

 

Exactly the same answer is obtained if the positions are filled from right to left namely, 6 X 7 X 8 X 9 X 

10. if the 3
rd

 position is filled first, the 1st position second, the 4th  osition third, the 5
th

 position fourth, 

and the 2
nd

 position fifth then answer is 9 X 6 X 10 X 8 X 7, still the same value, 30,240. 

 

Definition 1.1 

 

As in Example 1.14, the product of certain consecutive positive integers often comes into play in 

enumeration problems. Consequently, the following notation proves to be quite useful when we are 

dealing with such counting problems. It will frequently allow us to express our answers in a more 

convenient form. 

 

For an integer     n factorial (denoted n!) is defined by 

 

  0! = 1 

  n! = (n)(n-1)(n-2)….(3)(2)(1), for  

 

One finds that 1! = 1, 2! = 2, 3! = 6, 4! = 24, and 5! = 120, in addition, for each 

 (n + 1)! = (n + 1) (n!). 

 

Before we proceed any further, let us try to get a somewhat better appreciation for how fast n! grows. 

We can calculate that 10! = 3,628,800, and it just so happens that this is exactly the number of seconds 

in six weeks, Consequently, 11! Exceeds the number of seconds in one year, 12! Exceeds the number in 

12 years, and 13! Surpasses the number of seconds in century. 

 

,0n

,1n

,0n
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If we make use of the factorial notation, the answer in Example 1.14 can be Expressed in the following 

more compact form: 

 

 

Definition 1.2 

 

Given a collection of n distinct objects. Any (linear) arrangement of these objects is called a permutation 

of the collection. 

 

Starting with the letters a, b, c, there are six ways to arrange, or permute, all of the letters: abc, acb, bac, 

bca, cab, cba. If we are interested in arranging only two of the letters at a time, there are six such size – 2 

permutations: ab, ba, ac, ca, bc, cb.  

 

If there are n distinct objects and r is an integer, with 1 < r < n, then by the rule of product, the number 

of permutations of size r for the n objects are  

 

P(n, r) =   n    X  (n - 1)   X   (n - 2)   X  . . . X   (n - r + 1) 

        1st             2nd                3rd                                rth           

                         position        position        position                       position    

 

 

 

 

 

 

 

 

 

For r 0, P (n, 0) = 1 = n!/ (n- 0)!, so P (n, r) = n!/(n-r)! holds for all 0 < r < n. A special case of this result 

is Example 1.14, where n = 10, r = 5, and P (10, 5) = 30, 240. When permuting all of the n objects in the 

collection, we have r = n and find that P (n, n) = n!/0!=n!. 

 

Note, for example, that if n > 2, then P (n, 2) = n!/(n-2)! = n(n-1). When n>3 one finds that P(n,n-3) = 

n!/[n-(n-3)]!=n!/3!=(n)(n-1)(n_2)…(5)(4). 

 

The number of permutations of size r, where 0 < r < n, from a collection of  n objects, is P (n, r) =n!/(n-

r)! (Remember that P (n, r) counts (linear) arrangements in which the objects cannot be repeated.) 

However, if repetitions are allowed, then by the rule of product there are nr possible arrangements, with 

r > 0. 
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Example 1.15  

 

The number of words of three distinct letters formed from the letters of word ―JNTU‖ is P (4, 3) = 4!/(4 

- 3)!=24. If repetitions are allowed, the number of possible six – letter sequence is 46 = 4096. 

 

Example 1.16 

 

In how many ways can eight men and eight women be seated in a row if (a) any person may sit next to 

any other (b) men and women must occupy alternate seats (c) generalize this result for n men and n 

women. 

 

Here eight men and eight women are 16 indistinguishable objects. 

a) The number of permutations 16 chosen form 16 objects is P (16, 16) = 16!  

= 20922789890000. 

b) Here men and women are distinct (different) 

 

 i)   

 

 

 

  Man sitting first: the number of ways is 8! 8! 

 

 ii)   

 

 

 

  Woman sitting first: 8! 8! 

  Thus the number of ways men and women occupy  

  Alternatively is 8! 8! + 8! 8! = 2(8!)
2 

 

c) Any person may sit: (2n)!          

    Men and women sit alternatively: 2(n!)
2
 

 

Example 1.17 

 

A committee of eight is to be formed from 16 men and 10 women. In how many ways can the 

committee be formed if (a) there are no restrictions (b) there must be 4 men and 4 women (c) there 

should be an even number of women (d) more women than men (e) at least 6 men. 

 

a)  No distinction between men and women. Problem is to choose 8 out of a set of 26 persons. So 

the number of ways 8 are chosen out of 26 is C(26, 8)  = 26!/ 89! (18!) = 2.480721325 x 1017 

M W M W M W M W M W M W M W M W 

8 8 7 7 6 6 5 5 4 4 3 3 2 2 1 1 

W M W M W M W M W M W M W M W M 

8 8 7 7 6 6 5 5 4 4 3 3 2 2 1 1 
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b)   First stage choose 4 men out of 16 given by C(16, 4). Second stage choose     4 women out 

of 10 in C(10, 4)ways. Using product rule, the number of ways     in which the committee consisting of 

4 men and women is C(16,4) C(10,4) =      1,820 x 210 = 382,200. 

 

    c)    If 2i even number of women are chosen, then the remaining 8 -2i members      of the 

committee should be men. By product rule, C(10, 2i)C(16, 8-2i). Then      the total number of ways is  

 

 

 

 

d) Since the strength of the committee is 8, there should be 5 or more women so that women outnumber 

men. Using product rule, the number of ways is.  

 

 

 

 

 

e) When the number of men is 6 or more we get by a similar argument, the number of ways as  

 

 

 

 

Example 1.18 

 

The number of permutations of the letters in the word COMPUTER is 8!. If only five of the letters are 

used, the number of permutations (of size 5) is P(8, 5) = 8!/(8-5)! = 8!/3! = 6720. If repetitions of letters 

are allowed, the number of possible 12-letter sequences is 8
12

 = 6.872 x 10
10

. 



















 iii 28

16

2

104

1



















 iii 8

16108

5



















 iii 8

10168

5



Graph Theory and combinatorics                  10CS42 
 

Dept of CSE, SJBIT  103 
 

A 

A 

A 

B 

B 

B 

L 

L 

L 

L 

L 

L 

B 

L 

L 

A 

L 

L 

A 

A 

B 

B 

L 

L 

L 

B 

L 

L 

A 

L 

L 

A 

L 

A 

A 

B 

L 

L 

B 

L 

L 

A 

L 

B 

L 

A 

B 

A 

A 

A 

A 

B 

B 

B 

L1 

L1 

L1 

L1 

L1 

L1 

B 

L1 

L1 

A 

L1 

L1 

A 

A 

B 

B 

L2 

L2 

L1 

B 

L2 

L1 

A 

L2 

B 

L2 

A 

L2 

A 

B 

L2 

L2 

B 

L2 

L2 

A 

L2 

B 

L2 

A 

B 

A 

A 

A 

A 

B 

B 

B 

L2 

L2 

L2 

L2 

L2 

L2 

B 

L2 

L2 

A 

L2 

L2 

A 

A 

B 

B 

L1 

L1 

L2 

B 

L1 

L2 

A 

L1 

B 

L1 

A 

L1 

A 

B 

L1 

L1 

B 

L1 

L1 

A 

L1 

B 

L1 

A 

B 

A 

(a)         (b) 

 

Example 1.19 

 

Unlike example 1.18, the number of (linear) arrangements of the four letters in BALL is 12, not 4! (= 

24), the reason is that we do not have four distinct letters to arrange. To get the 12 arrangements, we can 

list them as in table 1.1(a). 

If the two L‘s are distinguished as L1, L2, then we can use our previous ideas on permutations of distinct 

objects; with the four distinct symbols B, A, L1, L2, we have 4!=24 permutations. These are listed in 

Table 1.1(b). Table 1.1 reveals that for each arrangement in which the L‘s are indistinguishable there 

corresponds a pair of permutations with distinct L‘s. Consequently, 

 

2 X (Number of arrangements of the letters B, A, L, L) 

  = (Number of permutations of the symbols B, A, L1, L2), 

 

And the answer to the original problem of finding all the arrangements of the four letters in BALL is 

4!/2 = 12. 

 

Example 1.20 

 

Using the idea developed in Example 1.19, we now consider the arrangements of all nine letters in 

DATABASES. 

There are 3! = 6 arrangements with the A‘s distinguished for each arrangements in which the A‘s are not 

distinguished. For example, DA1 TA2 BA3 SES, DA1TA3BA2SES, DA2TA1BA3SES, DA2TA3BA1SES, 

DA3TA1BA2SES, and DA3TA2BA1SES all correspond to DATABASES, when we remove the 
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subscripts on A‘s. In addition, to the arrangement DA1TA2BA3SES there corresponds the pair of 

permutations A1TA2BA3S1ES2 and DA1TA2BA3S2ES1, when the S‘s are distinguished. Consequently, 

 

(2!)(3!) (Number of arrangements of the letters in DATABASES) =  

            (Number of permutations of the symbols D, A1, T, A2, B, A3, S1, E, S2) 

    So the number of arrangements of the nine letters in DATABASES is 9!/(2!3!) 

  = 30,240. 

 

Before stating a general principle for arrangements with repeated symbols, note that in our prior two 

examples we solved a new type of problem by relating it to previous enumeration principles. This 

practice is common in mathematics in general, and often occurs in the derivations of discrete and 

combinational formulas. 

 

If there are n objects with n1 indistinguishable objects of an r 
th

 type, where n1 + . . . + nr = n, then there 

are             (linear) arrangements of the given n objects 

 

 

 

Example 1.21  

 

The MASSASAUGA is a brown and white venomous snake indigenous to North America. Arranging all 

of the letters in MASSASAUGA. We find that there are 

 

 

 

 

Possible arrangements. Among these are 

 

 

 

 

In which all four A‘s are together. To get this last result, we considered all arrangements of the seven 

symbols AAAA (one symbol), S, S, S, M, U, G. 

 

Example 1.22  

 

Determine the number of (staircase) paths in the xy-plane from (2, 1) to (7, 4), Where each such path is 

made up of individual steps going one unit to the right (R) or one unit upward (U). The blue lines in Fig. 

1.1 show two of these Paths. 

    

 

!!...!

!

21 rnnn
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 Figure 1.1  

 
 

Beneath each path in Fig. 1.1 we have listed the individual steps. For example, in part (a) 

the list R, U, R, R, U, R, R, U indicates that starting at the point (2, 1), we first move one 

unit to the right [to (3, 1)], then one unit upward [to (3, 2)], followed by two units to the 

right [to (5, 2)], and so on, until we reach the point (7, 4). The path consists of five R‘s 

for moves to the right and three U‘s for moves upward. 

 

The path in part (b) of the figure is also made up of five R‘s and three U‘s. in general, the 

overall trip from (2, 1) to (7, 4) requires 7 – 2 = 5 horizontal moves to the right and 4 – 1 

= 3 vertical moves upward. Consequently, each path corresponds to a list of five R‘s and 

U‘s, and the solution for the number of paths emerges as the number of arrangements of 

the five R‘s and three U‘s, which is 8!/(5! 3!) = 56. 
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Example 1.23 

 

We now do something a bit more abstract and prove that if n and k are positive 

 integers with n = 2k, then n!/2k is an integer. Because our argument relies on  

Counting, it is an example of a combinatorial proof. 

 

Consider the n symbols x1, x1, x2 , x2……………………., xk , xk. The number of  

ways in which we can arrange all of these n =2k symbols is an integer that equals 

 

 

 

 

 

 
 

Figure 1.2 

We shall try to relate this problem to previous ones we have already encountered. 

Consider Figs. 1.2 (a) and (b). Starting at the top of the circle and moving clockwise, we 

list the distinct linear arrangements ABEFCD and CDABEF, which correspond to the 

same circular arrangements. In addition to these two, four other linear arrangements – 

BEFCDA, DABEFC, EFCDAB, and FCDABE — are found to correspond to the same 

circular arrangements as in (a) or (b). So inasmuch as each circular arrangement 

corresponds to six linear arrangements,  

We have 6 X (Number of circular arrangements of A, B, . . ., F) = 

   (Number of linear arrangements of A, B……F) = 6!. 

 

  Consequently, There are 6!/6 = 5! = 120 arrangements of A, B,….F around the circular 

table. 
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Example 1.25 

 

Suppose now that the six people of Example 1.24 are three married couples and that A, 

B, and C are the females. We want to arrange the six people around the table so that the 

sexes alternate. (Once again, arrangements are considered identical if one can be obtained 

from the other by rotation.) 

 

Before we solve this problem, let us solve Example 1.24 by an alternative method, which 

will assist us in solving our present problem. If we place A at the table as shown in Fig. 

1.3(a), five locations (clockwise from A) remain to be filled. Using B, C,…,F to fill.  

 

 

Figure 1.3 

                            

 

 

 

 

 

 

 

 

 

 

 

 

 

These five positions is the problem of permuting B, C, . . ., F in a linear manner, and this 

be done in 5! = 120 ways. 

 

To solve the new problem of alternating the sexes, consider the method shown in Fig. 

1.3(b). A (a female) is placed as before. The next position, clockwise from A, is marked 

M1 (Male 1) and can be filled in three ways. Continuing clockwise from A, position F2 

(Female 2) can be filled in two ways. Proceeding in this Manner, by the rule of product, 

there are 3 x 2 x 2 x 1 x 1 = 12 ways in which these six people can be arranged with no 

two men or women seated next to each other.  
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1.3 Combinations: The Binomial Theorem 

 

 

The standard Deck of playing Cards Consists of 52 cards comprising four suits: Clubs, 

diamond, hearts, and spades. Each suit has 13 cards: ace, 2, 3,…, 9, 10, jack, queen, king. 

If we are asked to draw three cards from a standard deck, in succession and without 

replacement, then by the rule of product there are 

 

 

 

possibilities, one of which is AH (ace of hearts), 9C (nine clubs), KD (King of 

diamonds). If instead we simply select three cards at one time from the deck so that the 

order  of selection of the cards is no longer AH-9C-KD, AH-KD-9C, 9C-AH-KD,9C-

KD-AH, KD-9C-AH, and KD-AH-9C all correspond to just one (unordered) selection. 

Consequently, each selection, or combination, of three cards, with no reference to order, 

corresponds to 3! Permutations of three cards. In equation form this translates into 

 

 (3!) x (Number of selection of size 3 from a deck of 52)  

  = Number of permutations of size 3 for the 52 cards 

 

Consequently, three cards can be drawn, without replacement, from a standard deck in 

52!/(3! 49!) = 22,100 ways. 

 

If we start with n distinct objects, each selection, or combination, of r of these objects, 

with no reference to order, corresponds to r! Permutations of size r from the n objects. 

Thus the number of combinations of size r from a collection of size n is  

 

 

 

 

In addition to C (n, r) the symbol     is frequently used. Both C (n, r) and      are 

sometimes read ―n choose r.‖ Note that for all n ≥ 0, C (n, r) = C (n, n) = 1. Further, for 

all n ≥ 1, C (n, 1) = C (n, n-1) = n. when 0 ≤ n < r, then C (n, r)  

A word to the wise! When dealing with any counting problem, we should ask ourselves 

about the importance of order in the problem, when order is relevant, we think in terms of 

permutations and arrangements and the rule of product. When order is not relevant, 

combinations could play a key role in solving the problem. 
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Example 1.26 

 

A hostess is having a dinner party for some members of her charity committee. Because 

of the size of her home, she can invite only 11 of the 20 committee members. Order is not 

important, so she can invite ―the lucky 11‖ in C (20, 11) =       = 20!/(11! 9!) = 167, 960 

ways. However, once the 11 arrive, how she arranges them around her rectangular 

dinning table is an arrangement problem. Unfortunately, no part of theory of 

combinations and permutations can help our hostess deal with ―the offended nine‖ who 

were not invited. 

 

Example 1.27 

 

Lynn an Patti decide to buy a PowerBall ticket. To win the grand prize for PowerBall one 

must match five numbers selected from 1 to 49 inclusive and then must also match the 

powerball, an integer from 1 to 42 inclusive. Lynn selects the five numbers (between 1 

and 49 inclusive). This she can do in     ways (since matching does not involve order). 

Meanwhile Patti selects the powerball – here there are        possibilities. Consequently, by 

the rule of product, Lynn and Patti can select the six numbers for their PowerBall ticket 

in                 =80,089,128 ways. 

 

 

 

 

Example 1.28 

 

a) A student taking a history examination is directed to answer any seven of 10 essay 

questions. There is no concern about order here, so the student can answer the 

examination in  

 

 

 

b) If the student must answer three questions from the first five and four questions         

from the last five, three questions can be selected from the first five in       = 10 

ways, and the other four questions can be selected in       = 5 ways. Hence, by the 

rule of product, the student can complete the examination in                = 10 X 5 = 

50 ways. 

c) Finally, should the directions on this examination indicate that the student must 

answer seven of the 10 questions where at least three are selected from the first 

five, then there are three cases to consider: 
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i) The student answers three of the first five questions and four of five: by the 

rule of product this can happen in                = 10 X 5 = 50 ways, as in part 

(b). 

 

ii)  Four of the first five questions and three of the last five questions are 

selected by the student: this can come about in               = 5 X 10 = 50 ways 

– again by the rule of product.  

 

iii)   The student decides to answer all five of the first five questions and two                                                                 

of the last five: The rule of product tells us that last case can occur in              

= 1 X 10 = 10 ways. 

 

 

 

 

Combining the results for cases (i), (ii), and (iii), by the rule of sum we find that the 

student can make                   = 50 + 50 + 10 = 110 selections of  seven 

(out of 10) questions where each selection includes at least three of the first five 

questions. 

 

 

 

Example 1.29 

a) At Rydell High School, the gym teacher must select nine girls from the junior and 

senior classes for a volleyball team. If there are 28 juniors and 25 seniors, she can 

make the selection in         = 4,431,613,550 ways. 

 

b)  If two juniors and one senior are the best spikers and must be on the team, then 

the rest of the team can be chosen in         =         15,890,700 ways. 

 

c) For a certain tournament that team must comprise four juniors and five seniors. 

The teacher can select the four juniors in      ways. For each of these selections she has        

ways to choose the five seniors. Consequently, by the rule of product, she can select her 

team in              = 1,087,836,750 ways for this particular tournament. 

 

 

Some problems can be treated from the viewpoint of either arrangements or 

combinations, depending on how one analyzes the situation. The following Example 

demonstrates this. 
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Example 1.30 

The gym teacher of Example 1.29 must make up four volleyball teams of nine girls each 

from the 36 freshman girls in her P.E. class. In how many ways can she select these four 

terms? Call the teams A, B, C, and D. 

 

a) To form team A, she can select any nine girls from the 36 enrolled          in ways. 

For team B the selection process yields       possibilities. This leaves       and   

possible ways to select teams C and D, respectively. So by the rule of product, the 

four teams can be chosen in   

 

 

 

      b) For an alternative solution, consider the 36 students lined up as follows: 

 

 

 

 

To select the four teams, we must distribute nine A‘s, nine B‘s, nine C‘s and nine D‘s in 

the 36 spaces. The number of ways in which this can be done is the number of 

arrangements of 36 letters comprising nine each of A, B, C, and D. This is now the 

familiar problem of arrangements of nondistinct objects, and the answer is  

 

 

 

Our next example points out how some problems require the concepts of both 

arrangements and combinations for their solutions. 

 

 

 

 

Example 1.31 

The number of arrangements of the letters in TALLAHASSEE is  

 

 

How many of these arrangements have no adjacent A‘s? 

   When we disregard the A‘s, there are  
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Ways to arrange the remaining letters. One of these 5040 ways is shown in the following 

figure, where the arrows indicate nine possible locations for the three A‘s. 

 

 

 

Three of these locations can be selected in        = 84 ways, and because this is also 

possible for all the other 5039 arrangements of E, E, S, T, L, L, S, H, by the rule of 

product there are 5040 X 84 = 423,360 arrangements of the letters in TALLAHASSEE 

with no consecutive A‘s. 

 

Before proceeding we need to introduce a concise way of writing the sum of list of  n + 1 

terms like am, am+1, am+2, . . ., am+n, where m and n are integers and n ≥ 0. This notation is 

called the Sigma Notation because it involves the capital Greek letter Σ; we use it to 

represent a summation by writing  

 

 

 

Here, the letter i is called the index of the summation, and this index accounts for all 

integers starting with the lower limit m and Continuing on up to (and including) the upper 

limit m + n. 

We may use this following notation 

 

                 for there is 

  

nothing special about the letter i. 
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Furthermore, using this summation notation, we see that one can express the answer to 

part (c) of Example 1.28 as  

 

 

 

 

We shall find use for this new notation in the following example and in many other 

places throughout the remainder of this book  

 

Example 1.32 

 

In the studies of algebraic coding theory and the theory of computer languages, we 

consider certain arrangements, called strings, made up from a prescribed alphabet of 

symbols. If the prescribed alphabet consists of the symbols 0, 1, and 2, for example, then 

01, 11, 21, 12, and 20 are five of the nine strings of length 2. Among the 27 strings of 

length 3 are 000,012, 202, and 110. 

 

In general, if n is any positive integer, then by the rule of product there are 3" strings of 

length n for the alphabet 0,1, and 2. If x = x1x2x3 . . . xn is one of these strings, we define 

the weight of x, denoted wt(x), by wt(x) = x1 +x2 + x3 + . . .+ xn. For example, wt(12) = 3 

and wt(22) = 4 for the case where n = 2; wt(10l) = 2, wt(210) = 3, and wt(222) = 6 for 

 n = 3. 

 

Among the 3
10

 strings of length 10, we wish to determine how many have even weight. 

Such a string has even weight precisely when the number of 1's in the string is even. 

 

There are six different cases to consider. If the string x contains no 1's, then each of the 

10 locations in x can be filled with either 0 or 2, and by the rule of product there are 210 

such strings. When the string contains two 1's, the locations for these two 1's can be 

selected in       ways. Once these two locations have been specified, there are 2
8
 ways to 

place either 0 or 2 in the other eight positions. Hence there are         2
8
 strings of even 

weight that contain two 1's. The numbers of strings for the other four cases are given in 

Table1.2. 

 

Consequently, by the rule of sum, the number of strings of length  

10 that have even weight is  
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Table 1.2   

 

Often we must be careful of overcounting—a situation that seems to arise in what may 

appear to be rather easy enumeration problems. The next example demonstrates how 

overcounting may come about. 

 

Example 1.33 

 

a) Suppose that Ellen draws five cards from a standard deck of 52 cards. In how 

many ways can her selection result in a hand with no clubs? Here we are 

interested in counting all five-card selections such as 

 

i) Ace of hearts, three of spades, four of spades, six of diamonds, and the jack of 

diamonds. 

ii)    Five of spades, seven of spades, ten of spades, seven of diamonds, and me king of   

diamonds. 

iii)  Two of diamonds, three of diamonds, six of diamonds, ten of diamonds, and the 

jack of diamonds.  

 

If we examine this more closely we see that Ellen is restricted to selecting her five 

cards from the 39 cards in me deck that are not clubs. Consequently, she can make 

her selection in        ways. 

 

 

Number of 1's 

 

Number of Strings 

 

Number of 1's 

 

Number of Strings  
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b) Now suppose we want to count the number of Ellen's five-card selections that 

contain at least one club. These are precisely the selections that were not counted in 

part (a). And since there are         possible five-card hands in total, we find that  

 

                    = 2, 598, 960 – 575,757  = 2,023,203 

 

of all five-card hands contain at least one club. 

 

c) Can we obtain the result in part (b) in another way? For example, since Ellen wants 

to have at least one club in the five-card hand, let her first select a club. This she can 

do in      ways. And now she doesn't care what comes up for the other four cards. So 

after she eliminates the one club chosen from her standard deck, she can then select 

the other four cards in       ways. Therefore, by the rule of product, we count the 

number of selections here as 

 

   = 13 X 249,900 = 3,248,700 

 

Something here is definitely wrong! This answer is larger than that in part (b) by 

more than one million hands. Did we make a mistake in part (b)? Or is something 

wrong with our present reasoning?  

 

For example, suppose that Ellen first selects  

  the three of clubs 

                           and then selects 

     the five of clubs, 

     king of clubs, 

     seven of hearts, and 

     jack of spades. 

 

If, however, she first selects 

     the five of clubs 

 and then selects 

     the three of clubs, 

     king of clubs, 

     seven of hearts, and 

     jack of spades, 

is her selection here really different from the prior selection we mentioned? 

Unfortunately, no! And the case where she first  

selects. 
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the king of clubs  

and then follows this by selecting 

     the three of clubs, 

     five of clubs, 

     seven of hearts, and 

     jack of spades 

is not different from the other two selections mentioned earlier. 

Consequently, this approach is wrong because we are overcounting — by considering 

like selections as if they were distinct. 

 

d) But is there any other way to arrive at the answer in part (b)? Yes! Since the five-

card hands must each contain at least one club, there are five cases to consider. These 

are given in Table 1.3. From the results in Table 1.3 we see, for example, that there 

are               five-card hands that contain exactly two clubs. If we are interested in 

having exactly three clubs in the hand, then the results in the table indicate that there 

are    such hands. 

 

 

Since no two of the cases in Table 1.3 have any five-card hand in common, the 

number of hands that Ellen can select with at least one club is 
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Table 1.3 

 

Number of clubs 

 

Number of Ways to 

Select This Number 

of Clubs 

 

Number of Cards 

That Are Not Clubs 

 

Number of Ways to 

Select This Number 

of Non clubs 

 

1 

 

 

2 
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4 
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We shall close this section with three results related to the concept of combinations. 

 

First we note that for integers n, r, with n > r >0,                   . This can be established  

 

 

 

 

 

 

 

algebraically from the formula for     , but we prefer to observe that when dealing 

with a selection of size r from a collection of n distinct objects, the selection process 

leaves behind n – r objects. Consequently,                affirms the existence of a 

correspondence between the selections of size r (objects chosen) and the selections of 

size n - r (objects left behind). An example of this correspondence is shown in Table 

1.4, where n = 5, r = 2, and the distinct objects are 1, 2, 3, 4, and 5. 
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This type of correspondence will be more formally defined in Chapter 5 and used in 

other counting situations. 

Our second result is a theorem from our past experience in algebra. 

 

Theorem 1.1 

The Binomial Theorem. If x and y are variables and n is a positive integer, then 

 

 

 

 

 

 

 

 

Before considering the general proof, we examine a special case. If n = 4, the 

coefficient of x2y2 in the expansion of the product 

 

  (x+y)  (x+y)   (x+y)   (x+y) 

      1st         2nd          3rd         4th 

  factor    factor           factor  factor 

 

is the number of ways in which we can select two x's from the four x's, one of which 

is available in each factor. (Although the x's are the same in appearance, we 

distinguish them as the x in the first factor, the x in the second factor, ... , and the x in 

the fourth factor. 

 

 

Also, we note that when we select two x's, we use two factors, leaving us with two 

other factors from which we can select the two y's that are needed.) For example, 

among the possibilities, we can select (1) x from the first two factors and y from the 

last two or (2) X from the first and third factors and y from the second and fourth. 

Table 1.5 summarizes the six possible selections. 

 

Consequently, the coefficient of x
2
y

2
 in the expansion of (x + y)

 4
 is        = 6, the 

number of ways to select two distinct objects from a collection of four distinct 

objects. 
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Table 1.4 

 

Selections of Size r = 2 (Objects 

Chosen) 

Selections of Size n - r = 3 

(Objects Left Behind) 

1.  1,2 

2.  1,3 

3.  1,4 

4.  1,5 

5.  2,3 

6.  2,4 

7.  2,5 

8.  3,4 

9.  3,5 

10.  4,5 

1.  3,4,5 

2.  2,4,5 

3.  2,3,5 

4.  2,3,4 

5.  1,4,5 

6.  1,3,5 

7.  1,3,4 

8.  1,2,5 

9.  1,2,4 

10. 1,2,3 

 

Table 1.5 

 

Factors Selected for x Factors Selected for y 

1.   1,2 

2.   1,3 

3.   1,4 

4.   2,3 

5.   2,4 

6.   2,5 

1.   3,4 

2.   2,4 

3.   2,3 

4.   1,4 

5. 1,3 

6. 1,2 

 

Now we turn to the proof of the general case. 

Proof: In the expansion of the product 

 (x+y)  (x+y)  (x+y) . . . . . . . (x+y) 

   1st   2nd    3rd                4th 

 Factor Factor Factor     Factor 

 

The coefficient of x
k
y

n-k
, where 0 < k < n, is the number of different ways in which 

we can select k x‟s [and consequently (n - k) y‟s] from the n available factors. (One 

way, for example, is to choose x from the first k factors and y from the last n – k 

factors) The total number of such selections of size k form a collection of size n is C 

(n, k) =       , and from this the binomial theorem follows. 

 

 

Example 1.34 

 

In view of this theorem, is often referred to as a binomial coefficient. Notice that it is 

also possible to express the result of Theorem 1.1 as 
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a) From the binomial theorem it follows that the coefficient of x
5
y

2
 in the expansion 

of (x + y)
7
 is        =        = 21 

 

b) To obtain the coefficient of a
5
b

2
 in the expansion of (2a - 3b)

7
, replace 2a by x and 

3b by y. From the binomial theorem the coefficient of x
5
y

2
 in (x + y)

7
 is and  

 

 

 

 

 

Corollary 1.1 

 

For each integer n > 0,  

 

 

 

 

 

 

 

 

Proof: Part (a) follows from the binomial theorem when we set x = y = 1. When x = -

1 and y = 1, part (b) results. 

 

Our third and final result generalizes the binomial theorem and is called the 

multinomial theorem.    

 

Theorem 1.2 

 

For positive integers n, t, the coefficient of        in the expansion of  

(x
1
 + x

2
 + x

3
 + . . . + x

t
)

n 
is 

 

 

 

Where each ni is an integer with 0 ≤ ni ≤ n, for all 1 ≤ i ≤ t, and   

n1 + n2 + n3 + . . . + nt = n. 
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Proof: As in the proof of the binomial theorem, the coefficient of             

is the number of ways we can select x1 from n1 of the n factors, x2 from n2 of the  

n – n1 remaining factors, x3 from n3 of the n – n1 – n2 now remaining factors, …., and 

xt from nt of the last n – n1 – n2 – n3 – . . . – nt-1 = nt   remaining factors. This can be 

carried out, as in part (a) of Example 1.30, in 

 

 

 

 

 

ways. We leave to the reader the details of showing that this product is equal  

to  

 

 

 

  which is also written as  

 

 

and is called a multinomial coefficient. (When t = 2 this reduces to a binomial 

coefficient) 

 

 

Example 1.35 

 

a) In the expansion of (x + y + z)
7
 it follows from the multinomial theorem that the 

coefficient of x
2
y

2
z

3
 is           =           = 210, while the coefficient of xyz

5
 is          = 42 

and that x
3
z

4
 is             =             =35. 

b) Suppose we need to know the coefficient of a2b3c2d5 in the expansion of (a + 2b 

– 3c + 2d + 5)16. If we replace a by v, 2b by w, - 3c by x, 2d by y, and 5 by z, then we 

can apply the multinomial Theorem to (v + w + x + y + z)
16 

and determine the 

coefficient of v
2
w

3
x

2
y

5
z

4 
as                   = 302,702,400. But  
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1.4 Combinations with Repetition 

 

When repetitions are allowed, we have seen that for n distinct objects an arrangement 

of size r of these objects can be obtained in n
r 
ways, for an integer r ≥ 0. We now turn 

to the comparable problem for combinations and once again obtain a related problem 

whose solution follows from our previous enumeration principles. 

 

Example 1.36 

 

On their way home from track practice, seven high school freshmen stop at a 

restaurant, where each of them has one of the following: a cheeseburger, a hot dog, a 

taco, or a fish sandwich. How many different purchases are possible (from the 

viewpoint of the restaurant)? 

 

Let c, h, t, and f represent cheeseburger, hot dog, taco, and fish sandwich, 

respectively. Here we are concerned with how many of each item are purchased, not 

with the order in which they are purchased, so the problem is one of selections, or 

combinations, with repetition. 

 

In Table 1.6 we list some possible purchases in column (a) and another means of 

representing each purchase in column (b). 

 

Table 1.6 

 

 

 

 

 

 

 

 

(

a

)

           (b) 

 

For a purchase in column (b) of Table 1.6 we realize that each x to the left of the first 

bar ( | ) represents a c, each x between the first and second bars represents an h, the 

x's between the second and third bars stand for t‘s, and each x to the right of the third 

bar stands for an f. The third purchase, for example, has three consecutive bars 

1. c, c, h, h, t, t, f 

2. c, c, c, c, h, t, f  

3. c, c, c, c, c, c, f  

4. h, t, t, f, f, f, f  

5. t, t, t, t, t, f, f 

6. t, t, t, t, t, t, t  

7. f, f, f, f, f, f, f   

8. x x | x x | x x | x 

9. x x x x | x | x | x 

10. x x x x x x | | | x 

11. | x | x x | x x x x 

12. | | x x x x x | x x 

13. | | x x x x x x x | 

14. | | | x x x x x x x 
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because no one bought a hot dog or taco; the bar at the start of the fourth purchase 

indicates that there were no cheeseburgers in that purchase. 

 

Once again a correspondence has been established between two collections of objects, 

where we know how to count the number in one collection. For the representations in 

column (b) of Table 1.6, we are enumerating all arrangements of 10 symbols 

consisting of seven x's and three |'s, so by our correspondence the number of different 

purchases for column (a) is. 

 

 

In this example we note that the seven x's (one for each freshman) correspond to the 

size of the selection and that the three bars are needed to separate the 3+1= 4 possible 

food items that can be chosen. 

 

When we wish to select, with repetition, r of n distinct objects, we find (as in Table 

1.6) that we are considering all arrangements of r x's and n - 1 |'s and that their 

number is  

 

 

 

 

Consequently, the number of combinations of n objects taken r at a time, with 

repetition, is C (n + r – 1, r). 

(In Example 1.36, n = 4, r = 7, so it is possible for r to exceed n when repetitions are 

allowed) 

 

Example 1.37 

 

A donut shop offers 20 kinds of donuts. Assuming that there are at least a dozen of 

each kind when we enter the shop, we can select a dozen donuts in C (20 + 12 - 1, 12) 

= C(31, 12) = 141,120,525 ways. (Here n = 20, r = 12.) 

 

Example 1.38 

 

President Helen has four vice presidents: (1) Betty, (2) Goldie, (3) Mary Lou, and (4) 

Mona. She wishes to distribute among them $1000 in Christmas bonus checks, where 

each check will be written for a multiple of $100. 
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a) Allowing the situation in which one or more of the vice presidents get nothing, 

President Helen is making a selection of size 10 (one for each unit of $100) from 

a collection of size 4 (four vice presidents), with repetition. This can be done in  

C(4 + 10 - l, 10) = C(13, 10) = 286 ways. 

b) If there are to be no hard feelings, each vice president should receive at least $ 

100. With this restriction, President Helen is now faced with making a selection 

of size 6 (the remaining six units of $100) from the same collection of size 4, and 

the choices now number C(4+6- 1,6) = C(9, 6) = 84. [For example, here the 

selection 2, 3, 3,4, 4, 4 is interpreted as follows: Betty does not get anything 

extra—for there is no 1 in the selection. The one 2 in the selection indicates that 

Goldie gets an additional $100. Mary Lou receives an additional $200 ($100 for 

each of the two 3's in the selection). Due to the three 4's, Mona's bonus check will 

total $100 + 3($100) = $400.] 

 

c)  If, each vice president must get at least $100 and Mona, as executive vice 

president, gets at least $500, then the number of ways President Helen can 

distribute the bonus checks is 

 

 

 

 

 

Having worked examples utilizing combinations with repetition, we now consider 

two examples involving other counting principles as well. 

 

Example 1.39 

 

In how many ways can we distribute seven bananas and six oranges among four 

children so that each child receives at least one banana?  

 

After giving each child one banana, consider the number of ways the remaining three 

bananas can be distributed among these four children. Table 1.7 shows four of the 

distributions we are considering here. For example, the second distribution in part (a) 

of Table 1.7—namely, 1, 3, 3—indicates that we have given the first child 

(designated by 1) one additional banana and the third child (designated by 3) two 

additional bananas. The corresponding arrangement in part (b) of Table 1.7 represents 

this distribution in terms of three b's and three bars.  

 

These six symbols—three of one type (the b's) and three others of a second type (the 

bars)—can be arranged in 6!/(3! 3!) = C(6, 3) = C(4+3 - 1, 3) =20 ways. [Here n = 4, 


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r = 3.] Consequently, there are 20 ways in which we can distribute the three 

additional  

bananas among these four children. Table 1.8 provides the comparable situation for 

distributing the six oranges. In this case we are arranging nine symbols—six of one 

type (the o's) and three of a second type (the bars). So now we learn that the number 

of ways we can distribute the six oranges among these four children is 9!/(6! 3!) = 

C(9, 6) = C(4+6 - 1, 6) = 84 ways. [Here n = 4, r = 6.] Therefore, by the rule of 

product, there are 20 X 84 = 1680 ways to distribute the fruit under the stated 

conditions. 

 

 

Table 1.7      Table 1.8 

1.  1, 2, 3 

2.  1, 3, 3 

3.  3, 4, 4 

4.  4, 4, 4 

5. b | b | b | 

6. b | | b b | 

7. | | b | b b 

8. | | | b b b 

 

        (a)       (b)     (a)             

(b) Example 1.40 

 

A message is made up of 12 different symbols and is to be transmitted through a 

communication channel. In addition to the 12 symbols, the transmitter will also send a 

total of 45 (blank) spaces between the symbols, with at least three spaces between each 

pair of consecutive symbols. In how many ways can the transmitter send such a message? 

 

There are 12! ways to arrange the 12 different symbols, and for each of these 

arrangements there are 11 positions between the 12 symbols. Because there must be at 

least three spaces between successive symbols, we use up 33 of the 45 spaces and must 

now locate the remaining 12 spaces. This is now a selection, with repetition, of size 12 

(the spaces) from a collection of size 11 (the locations), and this can be accomplished in 

C (11 +12—1, 12) ==646,646 ways. 

 

1.  1, 2, 2, 3, 3, 4 

2.  1, 2, 2, 4, 4, 4 

3.  2, 2, 2, 3, 3, 3 

4.  4, 4, 4, 4, 4, 4 

5. 0 | 0 0 | 0 0 | 0 

6. 0 | 0 0 | | 0 0 0 

7. | 0 0 0 | 0 0 0 | 

8. | | | 0 0 0 0 0 0 
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Consequently, by the rule of product the transmitter can send such messages with the 

required spacing in (12!)        = 3.097 X 1014 ways. 

 

In the next example an idea is introduced that appears to have more to do with number 

theory than with combinations or arrangements. Nonetheless, the solution of this example 

will turn out to be equivalent to counting combinations with repetitions. 

 

Example 1.41 

 

Determine all integer solutions to the equation 

 

x1 + x2 + x3  + x4 = 7,     where xi ≥ 0 for all 1 ≤ i ≤ 4. 

 

One solution of the equation is x1 = 3, x2 = 3, x3 = 0, x4 = 1. (This is different from a 

solution such as x1 = 1, x2 = 0, x3 = 3, x4 = 3, even though the same four integers are 

being used.) A possible interpretation for the solution x1 = 3, x2 = 3, x3 = 0, x4 = 1 is that 

we are distributing seven pennies (identical objects) among four children (distinct 

containers), and here we have given three pennies to each of the first two children, 

nothing to the third child, and the last penny to the fourth child. Continuing with this 

interpretation, we see that each nonnegative integer solution of the equation corresponds 

to a selection, with repetition, of size 7 (the identical pennies) from a collection of size 4 

(the distinct children), so there are C(4 +7 - 1,7) = 120 solutions. 

 

At this point it is crucial that we recognize the equivalence of me following: 

 

a)  The number of integer solutions of the equation 

 

 

 

b)   The number of selections, with repetition, of size r from a collection of size n. 

 

c)   The number of ways r identical objects can be distributed among n distinct    

containers. 

 

In terms of distributions, part (c) is valid only when the r objects being distributed are 

identical and the n containers are distinct. When both the r objects and the n containers 

are distinct, we can select any of the n containers for each one of the objects and get n
r 

distributions by the rule of product. 
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When the objects are distinct but the containers are identical, we shall solve the problem 

using the Stirling numbers of the second kind (Chapter 5). For the final case, in which 

both objects and containers are identical, the theory of partitions of integers (Chapter 9) 

will provide some necessary results. 

 

Example 1.42 

 

In how many ways can one distribute 10 (identical) white marbles among six distinct 

containers? 

 

Solving this problem is equivalent to finding the number of nonnegative integer solutions 

to the equation x1 + x2 + … + x6 = 10. That number is the number of selections of size 10, 

with repetition, from a collection of size 6. Hence the answer is C(6 + 10 — 1, 10)  

= 3003. 

 

We now examine two other examples related to the theme of this Section. 

 

 

Our next two examples provide applications from the area of computer science. 

Furthermore, the second example will lead to an important summation formula that we 

shall use in many later chapters. 

 

 

Example 1.43 

 

Consider the following program segment, where i, j, and k are integer variables. 

           for i := 1 to 20 do 

     for j : = 1 to i do 

       for k : = 1 to j do 

         print (i * j + k) 

 

How many times is the print statement executed in this program segment? 

 

Among the possible choices for i, j, and k (in the order i-first, j-second, k-third) that will 

lead to execution of the print statement, we list (1) 1, 1, 1; (2) 2, 1, 1; (3) 15, 10, 1; and 

(4) 15, 10, 7. We note that i = 10, j == 12, k = 5 is not one of the selections to be 

considered, because j = 12 > 10 = i; this violates the condition set forth in the second for 

loop. Each of the above four selections where the print statement is executed satisfies the 

condition 1 ≤ k ≤ j ≤ i ≤ 20. In fact, any selection a, b, c (a ≤ b ≤ c) of size 3, with 



Graph Theory and combinatorics                  10CS42 
 

Dept of CSE, SJBIT  128 
 

repetitions allowed, from the list 1, 2, 3,.... 20 results in one of the correct selections: 

here, k = a, j = b, i = c. Consequently the print statement is executed 

 

 

 

If there had been r (≥ 1) for loops instead of three, the print statement would have been 

executed                  times. 

Example 1.44 

 

Here we use a program segment to derive a summation formula. In this program segment, 

the variables i, j, n, and counter are integer variables. Furthermore, we assume that the 

value of n has been set prior to this segment.  

 

    counter : = 0 

     for i : = 1 to n do 

       for j : = 1 to i do 

        counter : = counter +1 

 

From the results in Example 1.43, after this segment is executed the value of (the 

variable) counter will be  

 

 

(This is also the number of times that the statement  

 (*)  counter : = counter +1 

is executed.)  

 

This result can also be obtained as follows: when i := 1, then j varies from 1 to 1 and (*) 

is executed once; when i is assigned the value 2, then j varies from 1 to 2 and (*) is 

executed twice; j varies from 1 to 3 when i is assigned the value 3, and (*) is executed 

three times; in general, for 1 ≤ k ≤ n, when i := k, then j varies from 1 to k and (*) is 

executed k times. In total, the variable counter is incremented [and the statement (*) is 

executed] 1+2+3+…+n times. 

 

Consequently, 

 

 

 

 

The derivation of this summation formula, obtained by counting the same result in two 

different ways, constitutes a combinatorial proof.  

times1540
3

22

3

1320

















 








 

r

r 120

.
2

1

2

12







 








  nn

2

)1(

2

1
...321

1










 




nnn
ni

n

i



Graph Theory and combinatorics                  10CS42 
 

Dept of CSE, SJBIT  129 
 

      UNIT 6 

 

PRINCIPLE OF INCLUSION AND EXCLUSION 
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Generalizations of the Principle 
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Derangements: Nothing Is in Its Right Place 

 
Theorem: 
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Rook Polynomials 

In combinatorial mathematics, a rook polynomial is a generating polynomial of the 

number of ways to place non-attacking rooks on a board that looks like a checkerboard; 

that is, no two rooks may be in the same row or column. The board is any subset of the 

squares of a rectangular board with m rows and n columns; we think of it as the squares 

in which one is allowed to put a rook. The board is the ordinary chessboard if all squares 

are allowed and m = n = 8 and a chessboard of any size if all squares are allowed and m = 

n. The coefficient of x
 k
 in the rook polynomial RB(x) is the number of ways k rooks, none 

of which attacks another, can be arranged in the squares of B. The rooks are arranged in 

such a way that there is no pair of rooks in the same row or column. In this sense, an 

arrangement is the positioning of rooks on a static, immovable board; the arrangement 

will (usually) be different if the board is rotated or reflected. 

The term "rook polynomial" was coined by John Riordan.  Despite the name's derivation 

from chess, the impetus for studying rook polynomials is their connection with counting 

permutations with restricted position. A board B that is a subset of the n × n chessboard 

corresponds to permutations of n objects, which we may take to be the numbers 1, 2, ..., 

n, such that the number aj in the j-th position in the permutation must be the column 

number of an allowed square in row j of B. Famous examples include the number of ways 

to place n non-attacking rooks on: 

 an entire n × n chessboard, which is an elementary combinatorial problem; 

 the same board with its diagonal squares forbidden; this is the derangement or 

"hat-check" problem; 

 the same board without the squares on its diagonal and immediately above its 

diagonal (and without the bottom left square), which is essential in the solution of 

the problème des ménages. 
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Interest in rook placements, i.e., in permutations with restricted position, arises from pure 

and applied combinatorics, group theory, number theory, and statistical physics. The 

particular value of rook polynomials comes from the utility of the generating function 

approach, and also from the fact that the zeroes of the rook polynomial of a board provide 

valuable information about its coefficients, i.e., the number of non-attacking placements 

of k rooks. 

Definition 

The rook polynomial of a board B, RB(x), is the generating function for the numbers of 

arrangements of non-attacking rooks: 

 

where rk is the number of ways to place k non-attacking rooks on the board. Despite the 

notation, this is a finite sum, since the board is finite so there is a maximum number of 

non-attacking rooks it can hold; indeed, there cannot be more rooks than the smaller of 

the number of rows and columns in the board. 

i. Complete boards 

The first few rook polynomials on square n × n boards are (with Rn = RB): 

 
In words, this means that on a 1 × 1 board, 1 rook can be arranged in 1 way, and zero rooks can 

also be arranged in 1 way (empty board); on a complete 2 × 2 board, 2 rooks can be arranged in 

2 ways (on the diagonals), 1 rook can be arranged in 4 ways, and zero rooks can be arranged in 1 

way; and so forth for larger boards. 

For complete m × n rectangular boards Bm,n we write Rm,n := RBm,n . The smaller of m and n can be 

taken as an upper limit for k, since obviously rk = 0 if k > min(m,n). This is also shown in the 

formula for Rm,n(x ). 

The rook polynomial of a square chessboard is closely related to the generalized Laguerre 

polynomial Ln
α(x) by the identity: 

 

http://en.wikipedia.org/wiki/Group_theory
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http://en.wikipedia.org/wiki/Statistical_physics
http://en.wikipedia.org/wiki/Zeroes
http://en.wikipedia.org/wiki/Generating_function
http://en.wikipedia.org/wiki/Laguerre_polynomial
http://en.wikipedia.org/wiki/Laguerre_polynomial
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Graph Theory and combinatorics                  10CS42 
 

Dept of CSE, SJBIT  140 
 

ii. Matching polynomials 

A rook polynomial is a special case of one kind of matching polynomial, which is the generating 

function of the number of k-edge matchings in a graph. 

The rook polynomial Rm,n(x) corresponds to the complete bipartite graph Km,n . The rook 

polynomial of a general board B ⊆ Bm,n corresponds to the bipartite graph with left vertices v1, 

v2, ..., vm and right vertices w1, w2, ..., wn and an edge viwj whenever the square (i, j) is allowed, 

i.e., belongs to B. Thus, the theory of rook polynomials is, in a sense, contained in that of 

matching polynomials. 

We deduce an important fact about the coefficients rk, which we recall give the number of non-

attacking placements of k rooks in B: these numbers are unimodular, i.e., they increase to a 

maximum and then decrease. This follows (by a standard argument) from the theorem of 

Heilmann and Lieb about the zeroes of a matching polynomial (a different one from that which 

corresponds to a rook polynomial, but equivalent to it under a change of variables), which 

implies that all the zeroes of a rook polynomial are negative real numbers. 

 

 

http://en.wikipedia.org/wiki/Matching_polynomial
http://en.wikipedia.org/wiki/Matching_%28graph_theory%29
http://en.wikipedia.org/wiki/Complete_bipartite_graph
http://en.wikipedia.org/w/index.php?title=Unimodular_sequence&action=edit&redlink=1
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Arrangements with Forbidden Positions 
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UNIT 7 

GENERATING FUNCTIONS 

 

Consider the Problem. 

 Mildred buys 12 oranges for her children Grace, Mary, and Frank. In how many 

ways she can distribute oranges so that Grace gets at least four, Mary and Frank gets at 

least two, but Frank gets no more than five? 

The following table lists all possible distributions. 

 

G   M   F  G   M   F  G   M   F 

4 3   5  5    3    4  6    4    2 

5 4   4  5    4    3  7    2    3 

6 5   3  5    5    2  7    3    2 

7 6   2  6    2    4  8    2    3 

5   2   5  6    3    3 

We see that we have all the integer solutions to the equation 

Considering the first two cases in this table, we find the solutions 

 4 +3 + 5 = 12 and 4 + 4 + 4 = 12. 

When we multiply three polynomials 

  
  (1) .......  xxxx

xxxxxxxxxx
5432

6543287654





        
 

Two of the ways to obtain x12 are as follows; 

1.From the product x4x3x5, where x4 is taken from (x4 + x5 + x6 + x7 + x8) 

and x3 is taken from (x2 + x3 + x4 + x5 + x6) and x3 from (x2 + x3 + x4 + x5). 

2. From the product x4x4x4,where first x4 is found in first polynomial, the second x4 is 

found in second and third x4 in third polynomial. 

          Examining the eqn(1) in previous slide more closely, we realise that we obtain the 

product xixjxk for every triplet (i, j, k) that appears in the table of possible solutions. 

Consequently the coefficient of x12  in the f(x) counts the number of distributions which 

is 14.  

  
 

 ondistributi for function generating cal led is f(x) function The

(2) .......  xxxx

xxxxxxxxxxf(x)
5432

6543287654





                                                  

 

 

The factor (x4 + x5 + x6 + x7 + x8) indicates that we can give 4 or 5 or 6 or 7 or 8 of the 

oranges to Grace. The coefficient of each x is one because oranges are identical objects 
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and there is only one way to distribute four oranges to Grace and one to give five oranges 

and so on. Since Mary and Frank must get at least two oranges each, the other terms (x2 

+ x3 + x4 + x5 + x6) and (x2 + x3 + x4 + x5) start with x2 and for frank we stop at x5 so 

that he does not receive more than f oranges. 

The same can be modeled as under also. 

Find the number of integer solutions to 

ons.distributi for the   a called is )(
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Example: 

If there are at least 24 number of red, green, white and black jelly colors beans, in 

how many ways can Douglas select 24 of these candies so that he has even number of 

white beans and at least six black ones? 
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One such selection is five red, three green, eight white and eight black jelly. This 

arises from x5 in the first factor, x3 in the second factor, x8 in the third factor and 

X8 in the forth factor.  

 

Example:How many integer solutions are there for the equation? 
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Example: 

Determine the generating function for the n-combinations of apples, 

bananas,Oranges  and pears where in each n-combination the number of apples is Even, 

the number of bananas is odd, the number of oranges is between 0 and 4, and there is at 

least one pear. The problem is finding the number of nonnegative integral solutions of 

e1+e2+e3+e4=n where e1 is even that counts number of apples, e2 is odd that counts 

number of bananas, 0 ≤ e3 ≤ 4 that counts number of oranges, and e4 ≥ 1 that counts 

number of pears. Create one factor for each type of fruit where the exponents are 

allowable number‘s in the n-combinations for that type of fruit. 
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Where the first factor corresponds to apples, second for bananas, third for oranges and 

fourth for pears and  
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Hence the coefficients in the Taylor series for this rational function count the number of 

combinations of the type considered. 

 

Example: 

If ek represents the number of ways to make change for k rupees, using Rs.1, 

Rs.2, Rs.5, Rs.10, and Rs.100, find the generating function for ek. 
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Extension of binomial coefficient : 

 

For each n belongs to Z+, the binomial theorem tells that 
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Ex.  In how many ways can we select, with repetitions allowed, r objects from n distinct 

objects? 
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Example:  

In how many ways can a police captain distribute 24 riffle shells to four police 

officers so each police officer gets at three shells but not more than eight shells? 

 

The choices for the number of shells each officer receives are given by 
843 ... xxx   

There are four officers, so the resulting generating function is, 
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Example: 
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Example:  

Use generating functions to determine how many four-element subsets of 

S={1,2,3,...,15} contain no consecutive integers.  

Consider one such subset {1,3,7,10}, and write 1≤1<3<7<10≤15. We see that this set of 

inequalities determines the differences 1-1=0, 3-1=2, 7-3=4, 10-7=3 and 15-10=5 and 

these differences sum to 14. 

 

Consider another subset {2,5,11,15}, we write 1≤2<5<11<15 ≤15; these 

inequalities also yield the differences 1,3,6,4 and 0, which will sum to 14. 

These examples suggest us a one-to-one correspondence between four element subsets to 

be counted and integer solutions to c1+c2+c3+c4 +c5 =14 where 0 ≤c1,  c5 and  2 ≤c2 

,c3 ,  c5.. The answer is the co-eff of x14 in 
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Example: 

Use generating functions to determine how many four-element subsets of 

S={1,2,3,...,15} contain no consecutive integers. 
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Example: 

 In how many ways can a police captain distribute 24 riffle shells to four police 

officers so each police officer gets at three shells but not more than eight shells? 

 

The choices for the number of shells each officer receives are given by 
843 x...xx   

There are four officers, so the resulting generating function is, 

.)...()( 4843 xxxxf   

We seek the coefficient of x24 in f(x). with 
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Example: 

. Use generating functions to determine how many four-element subsets of 

S={1,2,3,...,15} contain no consecutive integers.  

Consider one such subset {1,3,7,10}, and write 1≤1<3<7<10≤15. We see that this 

set of inequalities determines the differences 1-1=0, 3-1=2, 7-3=4, 10-7=3 and 15-

10=5 and these differences sum to 14. 

Consider another subset {2,5,11,15}, we write 1≤2<5<11<15 ≤15; these 

inequalities also yield the differences 1,3,6,4 and 0, which will sum to 14. 

These examples suggest us a one-to-one correspondence between four element 

subsets to be counted and integer solutions to c1+c2+c3+c4 +c5 =14 where 0 

≤c1,c5 and 2 ≤c2 ,c3 ,c5..The answer is the co-eff of x14 in 
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Example. Find the convolution of the sequences 1, 1, 1, 1, ….. and 1,-1,1,-1,1,-1,…. 
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Example: Determine the co- eff of x0 in (4x3 - 5/x)16 
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Example: Determine the sequence generated by  (1 - 4x)-1/2 

We know that, 
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Example: Determine the number of ways to color squares of a  1 x n chess board using 

the colors, red, white, and blue, if an even number of squares are to be colored red. 

Let an be the number of such colorings, with a0 = 1. 

Let an equals the number of n-permutations a multilist of three colors (red, white and 

blue), each with an infinite repetition number in which red occurs an even number of 

times. Thus the exponential generating sequence a0,a1,a2,..an..   is the product of red, 

white and blue factors: 
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Partitions of Integers 

Partition a positive integer n into positive summands and seeking the number of such 

partitions, without regard to order.This number is denoted by p(n).  

 

For example, p(1)=1: 1 

                      p(2)=2: 2=1+1 
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                      p(3)=3: 3=2+1=1+1+1 

                      p(4)=5: 4=3+1=2+2=2+1+1=1+1+1+1 

                      p(5)=7: 5=4+1=3+2=3+1+1=2+2+1=2+1+1+1 

                                     =1+1+1+1+1 

We should like to obtain p(n) for a given n without having to list all the partitions. We 

need a tool to keep track of the  numbers of 1's, 2's, ...,   n's that are used as summands for 

n. 
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Exampe:Find the generating function for the number of ways an advertising agent can 

purchase n minutes of air time if time slots for commercials come in blocks of 30, 60, or 

120 seconds.  
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Example: Find the generating function for pd(n), the number of partitions of a positive 

integer n into distinct summands. 

Let us consider 11 partitions of 6: 

1)1+1+1+1+1+1 2)1+1+1+1+2 3)1+1+1+3 

4)1+1+4  5)1+1+2+2  6)1+5 

7)1+2+3  8)2+2+2  9)2+4  

10)3+3        11)6 

Partitions 6,7,9 and 11 have distinct summands, so Pd(6)=4 
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Example: Partition into odd summands but each such odd summands must occur an odd 

number of times-or not at all. Here, for example, there is one such partition of integer 1, 

namely 1, there are no partitions of 2, there two such partitions for integer 3, namely 3 

and 1+1+1. one partition for integer 4 namely 3+1. The generating function for the 

partitions described is given by  
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Ferrer's graphHere we see a partition of 14 into summands, where 4 is the largest 

summand, and a second partition into exactly four summands 

The number of partitions of an integer n into m summands is equal to the number of 

partitions where m is the  largest summands. 

 

 

 

 

 

Counting the compositions of a positive integer n using Generating Functions 
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432  xxxx
 

Where , for example, the co-eff of x4 is 1, for one summand  composition of 4 namely, 4. 

To obtain number of compositions of n, we need the co-eff of xn in  
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Here for instance we obtain x4 in (x+x2+x3+x4+….)2 from products (x1.x3), (x2.x2), 

and  (x3.x1). So co-eff of x4 in x2/(1-x)2 is 3, which is number of two summand 

compositions  of 4), 1+3, 2+2, 3+1. 

 

Continuing with the three summand compositions we now examine 
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Once again we look at the ways x4 comes about – namely, from products (x1.x1.x2), 

(x1.x2.x1), and (x2.x1.x1). So here co-eff of x4 is 3, which accounts for the three 

summand compositions 1+1+2, 1+2+1, and 2+1+1 (of 4). 

14=4+3+3+2+1+1 

    =6+4+3+1 
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Finally the co-eff of x4 in below function is 1, 
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is 1+3+3+1 = 8 (=23), the number of compositions of 4. In fact this is 

also the co-eff of x4 in the above equn. 

Generalizing the situation we find that the number of compositions of a positive integer n 

is the co-eff of xn in the generating function 
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So the number of integer compositions of a positive integer n is the co-eff of xn in f(x) 

and this is 2n-1 as derived in the equation in previous slide. 

Let us examine the identity  

nxxxx 






 

.....1
x-1

x-1 32
1n

When x is replaced by 2 in this the result tells 

that for all n belonging to Z+, 

.12
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2.....2221 1

1n
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
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
nn Where do we use this? 

Consider the special compositions of integers 6 and 7, that read same left to right as right 

to left. 

 6    7  

 1+4+1    1+5+1  
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 2+2+2    2+3+2  

 1+1+2+1+1    1+1+3+1+1  

 3+3    3+1+3  

 1+2+2+1    1+2+1+2+1  

 2+1+1+2    2+1+1+1+2  

 1+1+1+1+1+1    1+1+1+1+1+1+1  

These are palindromes for 6 and 7. We find that for 7 there are  1+(1+2+4) = 

1+(1+21+22) = 1+(23-1) = 23 palindromes.  There is one palindrome with one summand, 

7. There is also one palindrome where center summand is 5 and where we place one 

composition of 1 on either side of this summand (palindrome 2). 

 

For the center summand 3 we place one of the two compositions of 2 on the right and 

then match it on the left, with same composition, in reverse order. (palindromes 3 and 4) 

finally when the center summand is 1, we put a given composition of 3 on the right side  f 

this 1 and match on left side with same composition, in reverse order. There are 23-1 = 4 

compositions of 3 (palindromes 5,6,7,8). 

 

The situation is same for palindromes of 6 except case where + sign appears as center. So 

for n=6, 

i)Center summand 6  1 palindrome 

ii)Center summand 4  1(=21-1) palindrome 

iii) Center summand 2  2(=22-1) palindrome 

iv) + sign at Center   4(=23-1) palindrome 

So there are 1+(1+21+22) = 1+(23-1)=23 palindromes for 6. 

Now we look at the general situation. For n=1 there is one palindrome. If n = 2k+1, for k 

belonging to Z+, then there is one palindrome with center summand n. for 1 ≤ t ≤ k, there 

are 2t-1 palindromes of n with center summand n-2t. Hence the total number of 

palindromes of n is  

    1+(1+22+23+…….+2k-1) = 1+(2k-1) = 2k = 2(n-1)/2 

Now consider n even, say n = 2k for k belonging to Z+.  

Here there is one palindrome with center summand n-2s (one palindrome for each of 2s-1 

compositions of s). In addition there are 2k-1 palindromes where a + sign is at the center 

(one palindrome for each of the 2k-1 compositions of k).In total, n has  

     1+(1+21+22+23+…….+ 2k-2+2k-1) = 1+(2k-1) = 2k = 2n/2 

Observe that for  2/
2 hasn  ,

n
Zn  palindromes. 

Partitions of IntegersPartition a positive integer n into positive summands and seeking 

the number of such partitions, without regard to order. This number is denoted by p(n).  
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For example, p(1)=1: 1 

                      p(2)=2: 2=1+1 

                      p(3)=3: 3=2+1=1+1+1 

                      p(4)=5: 4=3+1=2+2=2+1+1=1+1+1+1 

                      p(5)=7: 5=4+1=3+2=3+1+1=2+2+1=2+1+1+1 

                                     =1+1+1+1+1 

We should like to obtain p(n) for a given n without having to list all the partitions. We 

need a tool to keep track of the  numbers of 1's, 2's, ..., n's that are used as summands for 

n.
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Example:Find the generating function for the number of ways an advertising agent can 

purchase n minutes of air time if time slots for commercials come in blocks of 30, 60, or 

120 seconds.  
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Example: Find the generating function for pd(n), the number of partitions of a positive 

integer n into distinct summands. 

Let us consider 11 partitions of 6: 

1)1+1+1+1+1+1 2)1+1+1+1+2 3)1+1+1+3 

4)1+1+4  5)1+1+2+2  6)1+5 

7)1+2+3  8)2+2+2  9)2+4  

10)3+3  11)6 

Partitions 6,7,9 and 11 have distinct summands, so Pd(6)=4 
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Example: Partition into odd summands but each such odd summands must occur an odd  

umber of times-or not at all. Here, for example, there is one such partition of integer 1, 

namely, there are no partitions of 2, there are two such partitions for integer 3, namely 3 
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and 1+1+1. one partition for integer 4 namely 3+1. The generating function for the 

partitions described is given by  

.1)

1)(1)(1()(

0 0

)12)(12(

155159353

 





















k i

ikx

xxxxxxxxxf





 

Using Generating functions, we will also be able to deal with a sample space that is 

discrete but not finite. 

 

Example:Suppose that Brianna takes an examination until she passes it. Further, suppose 

the probability that she passes the examinations on any given attempt is 0.8 and the result 

of each attempt, after the first, is independent of any previous attempt. If we let P denote 

―pass‖ and F denote ―fail‖, for any given attempt, then our sample space may be 

expressed as 

                 = {P, FP, FFP, FFFP,….}Where, for example, Pr(FFP) is the 

probability that she fails the exams is twice before she passes it, which is given by 

(0.2)2(0.8). In addition, the sum of probabilities for the outcomes in          is Now suppose 

we want to know the probability she passes the exam on an even numbered attempt. That 

is we want Pr(A) where A is the event {FP, FFFP, ….}. 

At this point we introduce the discrete random variable Y where Y counts the number of 

attempts up to and including the one where she passes the exam. Then the probability 

distribution for Y is given by Pr(Y=y) = (0.2)y-1(0.8), y≥1.  

So Pr(A) can be determined as follows: 












1i

12i

1i

(0.8)(0.2)2i)Pr(yPr(A)

 
 
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1
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1
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....)2.0()2.0()2.0(1)2.0)(8.0(

....)2.0()2.0()2.0()8.0(
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2
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






 






 

Continuing with Y, now we‘d like to find E(Y), the number of time she expects to take 

exam before she passes it. To determine E(Y) we‘ll start with the formula, 
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Exponential Generating Functions: 

The generating functions we have dealt now are called ordinary Generating functions, 

which arose in selection problems where order was irrelevant. Now let us turn to the 

problems where order is relevant and crucial. We seek a tool. To find such a tool let us 

consider the binomial theorem. For each n belongs to Z+, 
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
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



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


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


When dealing with 

this we wrote that C(n,r) represented the number of combinations of n objects taken r at a 

time with  0 ≤ r ≤n. Consequently (1+x)n generated the sequence C(n,0), C(n,1), C(n,2), 

C(n,3),….., C(n,n) 
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
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Example: In how many ways can four letters of  ENGINE be arranged? 

  

The following table shows list of possible selections of size 4 from the letters 

E,N,G,I,N,E, along with number of arrangements those 4 letters determine. 

 

E E N N 4!/(2!2!)  E G N N 4!/2! 

E E G N 4!/2!   E I N N 4!/2! 

E E I N  4!/2!   G I N N   4!/2! 

E E G I  4!/2!   E I G N 4! 

 

Let us obtain the solution by using exponential gen. fun. 

For the letter E we use [1+x+(x2/2!)],  because there are 0, 1 or 2 E‘s to arrange. The 

number of distinct ways to arrange two E‘s is 1 (co-eff of the term x2/2).For the letter N 

we use [1+x+(x2/2!)],  because There are 0, 1 or 2 N‘s to arrange. The number of distinct 

ways to arrange two N‘s is 1 (co-eff of the term x2/2).The arrangements for each of the 
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letters G and I are represented by (1+x).Consequently, the exponential generating 

function is, 

     !44x of eff-co isanswer    the
2

x1
2 

!22xx1)x(f  Consider two of 

the eight ways in which the term x4/4! arises in the expansion of  

         x1 x1 !22xx1!22xx1)x(f   

1) From the product 

    
 

factors. last two from taken is 1 and

factors first two from taken is !22x where

 1 1 !22x !22x

 

Then  

     1 1 !22x !22x  

   
   !44x . 2!2!4! 

11 !2!24x




 

And the co-eff of x4/4! is 4!/(2!2!) which is the number of ways one can arrange four 

letters E, E, N, N. 

2) From the product  

    

 
factors. last two from taken is x andfactor  second from

 taken is 1 factor,first  from taken is !22x where

 x x 1 !22x

 

Here  

 (x4/2!)(1)(x)(x) = x4/2! = (4!/2!)(x4/4!) 

So the co-eff of x4/4! is 4!/2! Which is the number of ways the four letters E, E, 

G, I can be arranged.In the complete expansion of the f(x), the term involving x4 

and consequently x4/4!, is 


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Where the co-eff of x4/4! Is the answer (102 arrangements) produced by the eight results 

in the table 

 

Example: Consider the Maclaurian series expansions of ex and e-x 
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These results help us in following examples 

Example: A ship carries 48 flags, 12 each of the colors red, blue, white and black. 12 of 

these flags are placed on a vertical pole in order to communicate a signal to other ships. 

 

a) How many of these signals use an even number of blue flags and an odd number 

of black flags? 
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considers all signal made up of n flags, n ≥ 1. The last two factors restrict to even no. 

of blue and odd no. of black flags. 
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The co-eff of x12/12! in f(x) yields (1/4)(412)=411 signals made up of 12 flags 

with even no. blue & odd no. black flags 

b) How many of the signals have at least 3 white flags, or no white flags at all? 
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Example: Company hires 11 new employees, each of whom is to be assigned to one of 

the four subdivisions. Each subdivision will get at least one new employee. In how many 

ways can these assignments be made? 

Calling the subdivisions A, B, C and D, we can equivalently count the 11 letter sequences 

in which there is at least one occurrence of each letters A, B, C, and D. The exponential 

generating function for these arrangement is: 

4

...
!4

4x

!3

3x

!2

2x
x)x(f
















 

     

   
























4

0i

11
i4

4

i

i
1

11
14

11
26

11
34114    

:f(x)in  
!11

11x
 of eff-co  theisanswer  the

1xe4x2e6x3e44xe         

4
1xe)x(f
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Example: Determine the sequences generated by  following exponential generating 

functions.

 

   

   

3476,.... 412, 44, 3, i.e    

.0,1,2,3...n with 
n

34-
n

87 is sequence    the

0n 0n !n

n
3x

4
!n

n
8x

7 x3e4x8e7)x(f:lnso   

x3e4x8e7)x(f)b

,.....4,535,25 5, sequence  theproduces    this

0n !n

n
5x

5  x5e5)x(f:lnso   

.x5e5)x(f)a























 

   
91,....3,12,3,-1,   is    which 

,....43,2833,623),913(,03 is sequence so    

x92x63x28
0n !n

nxn3
                     

x92x63x283xef(x):lnso   

x92x63x283xed)f(x)

.... 2, 2, 2, 3),(2 2, 2, is sequence  theso   

2x3
0n !n

nx
22x3xe2)x(f:lnso   

2x3xe2)x(f)c











































 

 

Summation Operator 

In this section we introduce a technique that helps us to go from ordinary generating 

function for sequence a0, a1,a2, a3, …. to generating function for the sequence a0, a0+a1, 

a0+a1+a2, a0+a1+a2+a3, …. 
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  
     

   

operator.summation  as 
x)-(1

1
 refer to  weThus

,....
2

a
1

a
0

a,
1

a
0

a,
0

a sequence  thegenerates 
x)-(1

f(x)
 so,

....3x
3

a
2

a
1

a
0

a2x
2

a
1

a
0

ax
1

a
0

a
0

a          

....3x2xx1 ....3x
3

a2x
2

ax
1

a
0

a          

x)-(1

1
f(x).

x)-(1

f(x)

.
x)-(1

f(x)
function   theconsider,   ....,3x

3
a2x

2
ax

1
a

0
af(x)for 











 

.1,2,3,4... sequence for the fun. gen.  theis 
2x)-(1

1

x-1

1
.

x-1

1

1,...11,11,1 sequence for the fun. gen.  theis 
x-1

1
.

x-1

1

get,  we,
x-1

1
operator summation  Apply the

1,1,1,... sequence for the fun. gen.  theis 
x-1

1
 that know We



  

 

..0,1,3,5,.. ie,  2,....212,011,00,0

sequennce for the gen.fun. is which 
2

x1

2xx

x1

1

x1

2xx

get,  weoperator,summation  again theApply 

...0,1,2,3,4, sequence  thei.e

1,...110 1,11,00,0for fun  gen. is which 
x1

2xx

x1

1
)2x(x

get,  weoperator,summation  Apply the

0...0,1,1,0,0, sequence for the ,2x xgen.fun. heConsider t




















































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   

2n
n

1k
1)-(2k 1,nfor  that suggests This

9,..... 4, 1, 0, i.e

.... 5,310 3,10 1,0 0,  sequence the

for  fun. gen.  theis which 
3

x1

2xx

x1

1

2
x1

2xx

get,  wefunction,summation  again theApply 

























 

Example: Find a formula to express 02 + 12 +22 +32 +…+n2 as a function of n. 

 

4,... 3, 2, 1, 0, sequence for the fun. gen.  theis 
2x)-(1

x
 so

...3x42x3x21
dx

)x(dg

2)x1(

1
)1(2-x)-(-1)(1

     then,....3x2xx1
x-1

1
g(x)

 start with We








 











































n

0i

2i is 
4)x1(

)x1( x
in  n xof eff-co Hence

,...23222120,222120,2120,20 genearates this

4)x1(

)x1(x

)x1(

1
.

3)x1(

)x1(x

get,  we this,ooperator tsummation Apply 

,....23,22,21,20 generates   
3)x1(

)x1(x
 so

...4x243x232x22x
3)x1(

)x1(x

dx

)x(dg
x

dx

d
    x

 that,find  we technique thisRepeating
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 

 
  

     

   

        2n
1

1)2n(4

2n

2n
1

1n
1

1)1n(4

1n

1n
1

2n
1

4

2n

1n
1

4

1n
  

is, n xof eff-co  theso

....
2

x
4

2
x

4

1

4

0

2xx              

4
x12xx

4
x1

x1x

as, calcualted be alsocan  eff-co But this
















 





















 





















 



















 




































































 

   

        

       

  
6

1n21nn

1n2n1nn
6

1

1nn1nn1n2n
6

1

)!2n(!3

!1n

)!1n(!3

!2n

2n

2n

2n

1n






























 
















 




 

Example: Find a formula for the sum of first n natural numbers using the generating 

function for the sequence 0, 1, 3, 6, 10, 15, …. 

,15,....0,1,3,6,10 generates 
3x)-(1

x
Then 

5,...1,3,6,10,1 genrates 
3x)-(1

1
function    theThus

0i

ix
2i

i3x)-(1

1
 have,  we3,nfor 

0i

ix
1in

i
nx)-(1

1

 that,know We




 











 





 











 

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 

 

 

     

  1nn
2

13n

1-n
        

1n
1

11)--(n3

1-n

1n
1

1n
1

3-

1-n
        

3
x-1in  1-n xof eff-co        

3
x-1in  n xof eff-co        

3
x-1

x
in  n xof eff-co

n

0k
k

Now,














 

















 






























 

 

 

Summaries (m objects, n containers) 

Objects     Containers      Some                             Number  

   Are             Are           Containers                            of 

Distinct     Distinct       May Be Empty              Distributions 

    

    Yes           Yes                Yes                                    nm      

 

    Yes           Yes                No                                   n!S(m,n) 

 

    Yes           No                 Yes              S(m,1)+S(m,2)+...+S(m,n) 

 

    Yes           No                 No                                      S(m,n) 

 

    No            Yes                Yes       






 

m

1mn
 

 

    No            Yes                No                   












nm

1)nm(n
 

 

    No             No                Yes          (1) p(m), for n=m 

     

No             No                No           (2) p(m,1)+p(m,2)+...+p(m,n), n<m                                                            

p(m,n)   

p(m.n):number of partitions of m into exactly n summands 
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UNIT 8 

Sequences and Recurrence Relations 
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Sequences and Recurrence Relations 
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• Tower of Hanoi 

- In the nineteenth century, a game called the Tower of Hanoi became popular in 

Europe. This game represents work that is under way in the temple of Brahma.  

- There are three pegs, with one peg containing 64 golden disks. Each golden disk 

is slightly smaller than the disk below it.  

- The task is to move all 64 disks from the first peg to the third peg. 
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• The rules for moving the disks are as follows: 

1. Only one disk can be moved at a time. 

2. The removed disk must be placed on one of the pegs. 

3. A larger disk cannot be placed on top of a smaller disk. 

 

• The objective is to determine the minimum number of moves required to transfer 

the disks from the first peg to the third peg. 

 

• First consider the case in which the first peg contains only one disk.  

– The disk can be moved directly from peg 1 to peg 3.  

 

• Consider the case in which the first peg contains two disks.  

– First move the first disk from peg 1 to peg 2. 

– Then move the second disk from peg 1 to peg 3.  

– Finally, move the first disk from peg 2 to peg 3.  

 

• Consider the case in which the first peg contains three disks and then generalize 

this to the case of 64 disks (in fact, to an arbitrary number of disks). 

– Suppose that peg 1 contains three disks. To move disk number 3 to peg 3, 

the top two disks must first be moved to peg 2. Disk number 3 can then be 

moved from peg 1 to peg 3. To move the top two disks from peg 2 to peg 

3, use the same strategy as before. This time use peg 1 as the intermediate 

peg.  

– Figure 8.2 shows a solution to the Tower of Hanoi problem with three 

disks. 
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• Generalize this problem to the case of 64 disks. To begin, the first peg contains all 

64 disks. Disk number 64 cannot be moved from peg 1 to peg 3 unless the top 63 

disks are on the second peg. So first move the top 63 disks from peg 1 to peg 2, 

and then move disk number 64 from peg 1 to peg 3. Now the top 63 disks are all 

on peg 2.  

 

• To move disk number 63 from peg 2 to peg 3, first move the top 62 disks from 

peg 2 to peg 1, and then move disk number 63 from peg 2 to peg 3. To move the 

remaining 62 disks, follow a similar procedure. 

 

• In general, let peg 1 contain n ≥ 1 disks. 

1. Move the top n − 1 disks from peg 1 to peg 2 using peg 3 as the 

intermediate peg. 

2. Move disk number n from peg 1 to peg 3. 

3. Move the top n − 1 disks from peg 2 to peg 3 using peg 1  
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Linear Homogenous Recurrence Relations 
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Linear Homogenous Recurrence Relations 

 

 

 

 

 

 

 

 

 

 

 

 

 

Linear Homogenous Recurrence Relations 
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Linear Nonhomogenous Recurrence Relations 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Linear Nonhomogenous Recurrence Relations 
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Linear Recurrences 

 

There is a class of recurrence relations which can be solved analytically in general.  

These are called linear recurrences and include the Fibonacci recurrence. 

Begin by showing how to solve Fibonacci: 

 

Solving Fibonacci 

 

Recipe solution has 3 basic steps: 

1) Assume solution of the form an = r n 

2) Find all possible r’s that seem to make this work.  Call these1 r1 and r2.  Modify 

assumed solution to general solution an = Ar1n +Br2n where A,B are constants. 

3) Use initial conditions to find A,B and obtain specific solution. 

 

Solving Fibonacci 

 

1) Assume exponential solution of the form an = r n : 

Plug this into an = an-1 + an-2 : 

r 
n
 = r 

n-1
 + r 

n-2
  

Notice that all three terms have a common r
n-2

 factor, so divide this out: 

r
n
 /r

n-2
 = (r 

n-1
+r 

n-2
 )/r 

n-2
  r 

2
 = r  + 1 

 

This equation is called the characteristic equation of the recurrence relation. 

 

2) Find all possible r’s that solve characteristic 

r 
2
 = r  + 1 

  Call these r1 and r 2.
1
  General solution is 

an = Ar1
n
 +Br2

n
  where A,B are constants. 

Quadratic formula2 gives: 

r = (1  5)/2 

So r1 = (1+5)/2, r2 = (1-5)/2 

General solution:  

an = A [(1+5)/2]
n
 +B [(1-5)/2]

n  
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Solving Fibonacci 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Linear Recurrences with Constant Coefficients 

 

Previous method generalizes to solving ―linear recurrence relations with constant 

coefficients”: 

DEF:  A recurrence relation is said to be linear  if an is a linear combination of the 

previous terms plus a function of n.  I.e. no squares, cubes or other complicated function 

of the previous ai can occur.  If in addition all the coefficients are constants then the 

recurrence relation is said to have constant coefficients. 

 

Linear Recurrences with Constant Coefficients 

 

 

 

 

 

 

 

 

 

 

 Use initial conditions a0 = 0, a1 = 1 to find A,B and obtain specific solution.
 

0=a0 = A [(1+5)/2]
0 
+B [(1-5)/2]

0 
= A +B 

1=a1 = A [(1+5)/2]
1 
+B [(1-5)/2]

1   
  = A(1+5)/2 +B (1-5)/2  

   = (A+B )/2 + (A-B )5/2 

First equation give B = -A. Plug into 2
nd

: 

1 = 0 +2A5/2  so A = 1/5, B = -1/5 

Final answer: 

 

(CHECK IT!) nn

na












 














 


2

51

5

1

2

51

5

1

Q:  Which of the following are linear with constant coefficients? 

1. an = 2an-1 

 

2. an = 2an-1 + 2
n-3 

- an-3 

 

3. an = an-1
2
 

 

4. Partition function: 

)1,1(
1

0

innCpp
n

i

in 



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Linear Recurrences with Constant Coefficients 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Homogeneous Linear Recurrences 

 

To solve such recurrences we must first know how to solve an easier type of recurrence 

relation: 

DEF:  A linear recurrence relation is said to be homogeneous if it is a linear combination 

of the previous terms of the recurrence without an additional function of n. 

 

Q:  Which of the following are homogeneous? 

1.  an = 2an-1 

2.  an = 2an-1 + 2n-3 – an-3 

3.  Partition function:   

 

 

Linear Recurrences with Constant Coefficients 

 

 

A: 

1. an = 2an-1:  YES 

 

2. an = 2an-1 + 2
n-3 

- an-3:  YES 

 

3. an = an-1
2
:  NO.  Squaring is not a linear operation.  Similarly an = an-1an-2  and  an = 

cos(an-2) are non-linear. 

 

4. Partition function: )1,1(
1

0

innCpp
n

i

in 




   NO.   

This is linear, but coefficients are not constant as C (n -1, n -1-i ) is a non-constant 

function of n. 

)1,1(
1

0

innCpp
n

i

in 




A: 

1. an = 2an-1:  YES 

2. an = 2an-1 + 2
n-3 

- an-3: No.  There‘s an extra term  f (n) = 2
n-3 

3. Partition function: 

 

 

YES.  No terms appear not involving the previous pi 

)1,1(
1

0

innCpp
n

i

in 



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Homogeneous Linear Recurrences with Const. Coeff.‟s 

 

The 3-step process used for the Fibonacci recurrence works well for general 

homogeneous linear recurrence relations with constant coefficients.  There are a few 

instances where some modification is necessary. 

 

Homogeneous – Complications 

 

1) Repeating roots in characteristic equation.  Repeating roots imply that don‘t learn 

anything new from second root, so may not have enough information to solve 

formula with given initial conditions.  We‘ll see how to deal with this on next 

slide. 

2)  Non-real number roots in characteristic equation.  If the sequence has periodic 

behavior, may get complex roots (for example an = -an-2)
1
. We won‘t worry about 

this case (in principle, same method works as before, except use complex 

arithmetic). 

 

Complication: Repeating Roots 

 

 

 

 

 

 

 

 

 

 

 

Complication: Repeating Roots 

 

 

 

 

 

 

 

 

 

 

EG:  Solve an = 2an-1-an-2 , a0 = 1, a1 = 2 

Find characteristic equation by plugging in an = r 
n
: 

r 
2
 - 2r +1 = 0 

Since r 
2
 - 2r +1 = (r -1)

2  
the root r = 1 repeats.  

If we tried to solve by using general solution  

an = Ar1
n
+Br2

n 
= A1

n
+B1

n
 = A+B 

which forces an  to be a constant function (). 

SOLUTION:  Multiply second solution by n so general solution looks like: 

an = Ar1
n
+Bnr1

n
 

Solve an = 2an-1-an-2, a0 = 1, a1 = 2 

General solution: an = A1
n
+Bn1

n
 = A+Bn 

 

Plug into initial conditions 

1 = a0 = A+B·0·1
0
= A 

2 = a0 = A·1
1
+B·1·1

1
= A+B 

Plugging first equation A = 1 into second: 2 = 1+B implies B = 1. 

Final answer: an = 1+n 
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The Nonhomogeneous Case 

 

Consider the Tower of Hanoi recurrence (see Rosen p. 311-313)  

an = 2an-1+1. 

Could solve using telescoping.  Instead let‘s solve it methodically.  Rewrite: 

an - 2an-1= 1 

1) Solve with the RHS set to 0, i.e. solve the homogeneous case. 

2) Add a particular solution to get general solution.  I.e. use rule: 

 

 

 

 

 

 

 

The Nonhomogeneous Case 

 

 

 

 

 

 

 

The Nonhomogeneous Case 

 

 

 

 

 

 

 

 

 

 

 

 

General  

Nonhomogeneous  
= General  

homogeneous  

Particular 

Nonhomogeneous  
+ 

an - 2an-1 = 1 

1) Solve with the RHS set to 0, i.e. solve  

an - 2an-1 = 0 

Characteristic equation: r - 2 = 0 

 so unique root is r = 2.  General solution to homogeneous equation is 

an = A·2
n 

2) Add a particular solution to get general solution for an - 2an-1 = 1.  

Use rule: 

 

General 

Nonhomogeneous 
=

General 

homogeneous 

Particular

Nonhomogeneous 
+

 
 

 
There are little tricks for guessing particular nonhomogeneous solutions.  For example, 

when the RHS is constant, the guess should also be a constant.
1 

So guess a particular solution of the form bn=C. 

Plug into the original recursion: 

1 = bn – 2bn-1 = C – 2C = -C.  Therefore C = -1. 

General solution: an = A·2
n 

-1. 
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The Nonhomogeneous Case 

 

Finally, use initial conditions to get closed solution.  In the case of the Towers of Hanoi 

recursion, initial condition is: 

a1 = 1 

Using general solution  an = A·2
n
 -1  we get: 

1 = a1 = A·2
1
 -1 = 2A –1. 

Therefore, 2 = 2A, so A = 1. 

Final answer: an = 2
n
 -1 

 

 

More Complicated 

 

 

 

 

 

 

 

r 
3
 - 2r +1 = (r -1)(r 

2 
+r -1). 

Quadratic formula on r 
2 
+r -1: 

r = (-1  5)/2 

So r1 = 1, r2 = (-1+5)/2, r3 = (-1-5)/2 

General homogeneous solution:  

an = A + B [(-1+5)/2]
n 
+C [(-1-5)/2]

n
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More Complicated 

 

 

 

 

 

 

 

 

 

 

 

 

 

2) Nonhomogeneous particular solution to an - 2an-1 + an-3 = 2
n-3 

Guess the form bn = k 2
n
.  Plug guess in:  

k 2
n 
- 2k 2

n-1
 + k 2

n-3
 = 2

n-3 

Simplifies to: k =1.   

So particular solution is bn = 2
n 

 

General 

Nonhomogeneous 
=

General 

homogeneous 

Particular

Nonhomogeneous 
+

 
 

Final answer:  

an=A + B [(-1+5)/2]
n 
+ C [(-1-5)/2]

n
 + 2

n 


