
SMHTIROGLA FO SISYLANA DNA NGISED
)ESI & ESC ot nommoC(

 34SC01 :edoC tcejbuS 52 : skraM .A.I
: keeW/sruoH oH maxE 40 30 :sru

 25 : sruoH latoT 001 :skraM maxE
 TRAP – A

 TINU – 1 sruoH 7
 :NOITCUDORTNI noitatoN citotpmysA fo weiveR ,mhtiroglA fo noitoN noN fo sisylanA lacitamehtaM,s -

,troS elbbuB dna troS noitceleS ,noitcudortnI :sehcaorppA ecroF eturBsmhtiroglA evisruceR dna evisruceR
.gnihctaM gnirtS ecroF eturB dna hcraeS laitneuqeS

 TINU - 2 sruoH 6
 :REUQNOC DNA EDIVID egreM ,hcraeS yraniB ,draoB ssehC evitcefeD,dohteM lareneG :reuqnoC dna ediviD

.ecnamrofrep sti dna troS kciuQ ,troS
 TINU - 3 sruoH 7

 :DOHTEM YDEERG EHT muminiM ,senildaeD htiw gnicneuqeS boJ ,melborP kcaspanK ,dohteM lareneG ehT -
glAs’mirP :seerT gninnapS tsoC .shtaP tsetrohS ecruoS elgniS ;mhtiroglA s’laksurK ,mhtiro

 TINU - 4 sruoH 6
 :GNIMMARGORP CIMANYD teM lareneG ehT llA eht rof mhtiroglA s’dyolF ,mhtiroglA s’llahsraW ,doh - sriaP

elgniS,melborP shtaP tsetrohS - nosrepselaS gnilevarT ehT ,kcaspanK 1/0 ,sthgieW lareneG :shtaP tsetrohS ecruoS
.melborp

 TRAP – B
 TINU - 5 sruoH 7

ESAERCED - DNA - ECAPS ,SEHCAORPPA REUQNOC - :SFFOEDARTEMIT
esaerceD - dna - aeS tsriF htdaerB dna hcraeS tsriF htpeD ,troS noitresnI ,noitcudortnI :sehcaorppA reuqnoC ,hcr

ecapS gnitroS lacigolopoT - gnirtS ni tnemecnahnE tupnI ,gnitnuoC yb gnitroS ,noitcudortnI :sffoedarT emiT
.gnihctaM

 TINU – 6 sruoH 7
 :MEHT HTIW GNIPOC DNA REWOP CIMHTIROGLA FO SNOITATIMIL

rewoL - PN dna ,PN ,P ,seerT noisiceD ,stnemugrA dnuoB - etelpmoC laciremuN fo segnellahC ,smelborP
.smhtiroglA

 TINU - 7 sruoH 6
:REWOP CIMHTIROGLA FO SNOITATIMIL HTIW GNIPOC

 n :gnikcartkcaB - tesbuS ,melborP tiucriC nainotlimaH ,melborp sneeuQ – hcnarB.melborP muS - dna - :dnuoB
rP tnemngissA PN rof smhtiroglA noitamixorppA.melborP nosrepselaS gnilevarT ,melborP kcaspanK ,melbo - draH

 smelborP – melborP kcaspanK ,melborP nosrepselaS gnilevarT
 TINU – 8 sruoH 6

 :SMHTIROGLA MARP tsiL ,noitatupmoC xiferP rof smhtiroglA lellaraP ,ledoM lanoitatupmoC ,noitcudortnI
,smelborP hparG dna ,gniknaR

:skooB txeT
 sisylanA & ngiseD ehT ot noitcudortnI :nitiveL ynanA .1 2 ,smhtiroglAfo dn .7002 ,noitacudE nosraeP ,noitidE

 .)11 ,01 ,8 ,7 ,5 ,3 ,2 ,1 sretpahC eht morf ylno scipot detsiL(
2 ,smhtiroglA retupmoC fo slatnemadnuF:narakesajaR ravehtugnaS ,inhaS jatraS ,ztiworoH sillE .2 dn ,noitidE

 nU)31 ,5 ,4 ,3 sretpahC eht morf ylno scipot detsiL(.7002 ,sserPseitisrevi
:skooB ecnerefeR

droffilC ,tseviR .L lanoR ,nosresieL .E selrahC ,nemroC .H samohT .1 3 ,smhtiroglA ot noitcudortnI :nietS dr ,noitidE
.0102 ,IHP

 gnahC .C.R ,gnesT .S.S ,eeL .T.C.R .2 A smhtiroglA fo sisylanA dna ngiseD eht ot noitcudortnI :iasT.T.Y &
.5002 ,lliH warGcM ataT ,hcaorppA cigetartS

STNETNOC FO ELBAT

SCIPOT ON EGAP

 TINU – 1 NOITCUDORTNI :1 - 81

1.1 MHTIROGLA FO NOITON

2.1 MYSA FO WEIVER NOITATON CITOTP

.3.1 NON FO SISYLANA LACITAMEHTAM - SMHTIROGLA EVISRUCER DNA EVISRUCER

4.1 NOITCUDORTNI :SEHCAORPPA ECROF ETURB

TROS ELBBUB DNA TROS NOITCELES 5.1

 6.1 .GNIHCTAM GNIRTS ECROF ETURB DNA HCRAES LAITNEUQES

 TINU – :2 QNOC & EDIVID UER 91 - 62

 1.2 REUQNOC DNA EDIVID

DOHTEM LARENEG 2.2

HCRAES YRANIB3.2

.2 TROS EGREM 4

ECNAMROFREP STI DNA TROS KCIUQ 5.2

 TINU - DOHTEM YDEERG EHT: 3 72 - 24

1.3 DOHTEM LARENEG EHT

MELBORP KCASPANK 2.3

SENILDAED HTIW GNICNEUQES BOJ 3.3

4.3 MUMINIM - SEERT GNINNAPS TSOC

5.3 MHTIROGLAS’MIRP

6.3 MHTIROGLA S’LAKSURK

.SHTAP TSETROHS ECRUOS ELGNIS 7.3

 TINU – : 4 ORP CIMANYD G GNIMMAR 34 - 85

DOHTEM LARENEG EHT 1.4

MHTIROGLA S’LLAHSRAW 2.4

LLA EHT ROF MHTIROGLA S’DYOLF 3.4 - MELBORP SHTAP TSETROHS SRIAP

ELGNIS 4.4 - SHTAP TSETROHS ECRUOS

KCASPANK 1/0 STHGIEW LARENEG 5.4

MELBORP NOSREPSELAS GNILEVART EHT 6.4 .

TINU - ESAERCED 5 - DNA - ECAPS ,SEHCAORPPA REUQNOC - EMIT EDART - FFO

ESAERCED 1.5 - DNA - NOC NOITCUDORTNI :SEHCAORPPA REUQ 95 - 67

TROS NOITRESNI 2.5

HCRAES TSRIF HTDAERB DNA HCRAES TSRIF HTPED 3.5

GNITROS LACIGOLOPOT 4.5

ECAPS 5.5 - NOITCUDORTNI :SFFOEDART EMIT

GNITNUOC YB GNITROS 6.5

S NI TNEMECNAHNE TUPNI 7.5 GNIHCTAM GNIRT

 6 TINU

MEHT HTIW GNIPOC DNA REWOP CIMHTIROGLA FO SNOITATIMIL

REWOL1.6 - STNEMUGRA DNUOB 77 - 09

SEERT NOISICED2.6

PN DNA ,PN ,P 3.6 - ETELPMOC SMELBORP

TINU -7 : ITATIMIL HTIW GNIPOC REWOP CIMHTIROGLA FO SNO

 1.7 GNIKCARTKCAB : N - MELBORP SNEEUQ 19 - 011

MELBORP TIUCRIC NAINOTLIMAH 2.7

 TESBUS 3.7 – .MELBORP MUS

.7 HCNARB 4 - DNA - DNUOB : MELBORP TNEMNGISSA

 MELBORP KCASPANK 5.7

 .MELBORP NOSREPSELAS GNILEVART 6.7

PA 7.7 PN ROF SMHTIROGLA NOITAMIXORP - SMELBORP DRAH – GNILEVART

MELBORP KCASPANK ,MELBORP NOSREPSELAS

TINU -8 MARP A ROGL I SMHT 111 - 611

1.8 ,NOITCUDORTNI

2.8 UPMOC TAT LANOI M EDO L,

3.8 LELLARAP GLA O SMHTIR ROF P IFER X OC M ATUP T ,NOI

4.8 TSIL ,GNIKNAR DNA ARG HP ,SMELBORP

Analysis and Design of Algorithm 10CS43

UNIT – 1

INTRODUCTION

1.1 Notion of Algorithm

1.2 Review of Asymptotic Notation

1.3 Mathematical Analysis of Non-Recursive and Recursive Algorithms

1.4 Brute Force Approaches: Introduction

1.5 Selection Sort and Bubble Sort

1.6 Sequential Search and Brute Force String Matching.

1.1 Notion of Algorithm

Need for studying algorithms:

The study of algorithms is the cornerstone of computer science. It can be recognized as the

core of computer science. Computer programs would not exist without algorithms. With computers

becoming an essential part of our professional & personal life‘s, studying algorithms becomes a

necessity, more so for computer science engineers. Another reason for studying algorithms is that if we

know a standard set of important algorithms, They further our analytical skills & help us in developing

new algorithms for required applications

Algorithm

An algorithm is finite set of instructions that is followed, accomplishes a particular task. In

addition, all algorithms must satisfy the following criteria:

1. Input. Zero or more quantities are externally supplied.

2. Output. At least one quantity is produced.

3. Definiteness. Each instruction is clear and produced.

4. Finiteness. If we trace out the instruction of an algorithm, then for all cases, the

algorithm terminates after a finite number of steps.

5. Effectiveness. Every instruction must be very basic so that it can be carried out,

in principal, by a person using only pencil and paper. It is not enough that each

operation be definite as in criterion 3; it also must be feasible.

Dept of CSE,SJBIT 1

Analysis and Design of Algorithm 10CS43

An algorithm is composed of a finite set of steps, each of which may require one or more op-

erations. The possibility of a computer carrying out these operations necessitates that certain

constraints be placed on the type of operations an algorithm can include. The fourth criterion

for algorithms we assume in this book is that they terminate after a finite number of opera-

tions.

Criterion 5 requires that each operation be effective; each step must be such that it can, at least

in principal, be done by a person using pencil and paper in a finite amount of time. Performing

arithmetic on integers is an example of effective operation, but arithmetic with real numbers is

not, since some values may be expressible only by infinitely long decimal expansion. Adding

two such numbers would violet the effectiveness property.

• Algorithms that are definite and effective are also called computational procedures.

• The same algorithm can be represented in same algorithm can be represented in several ways

• Several algorithms to solve the same problem

• Different ideas different speed

Example:

Problem:GCD of Two numbers m,n

Input specifiastion :Two inputs,nonnegative,not both zero

Euclids algorithm

-gcd(m,n)=gcd(n,m mod n)

Untill m mod n =0,since gcd(m,0) =m

Another way of representation of the same algorithm

Euclids algorithm

Dept of CSE,SJBIT 2

Analysis and Design of Algorithm 10CS43

Step1:if n=0 return val of m & stop else proceed step 2

Step 2:Divide m by n & assign the value of remainder to r

Step 3:Assign the value of n to m,r to n,Go to step1.

Another algorithm to solve the same problem

Euclids algorithm

Step1:Assign the value of min(m,n) to t

Step 2:Divide m by t.if remainder is 0,go to step3 else goto step4

Step 3: Divide n by t.if the remainder is 0,return the value of t as the answer and

stop,otherwise proceed to step4

Step4 :Decrease the value of t by 1. go to step 2

1.1 Review of Asymptotic Notation

Fundamentals of the analysis of algorithm efficiency

• Analysis of algorithms means to investigate an algorithm‘s efficiency with

respect to resources:

• running time (time efficiency)

• memory space (space efficiency)

Time being more critical than space, we concentrate on Time efficiency of algorithms.

The theory developed, holds good for space complexity also.

Experimental Studies: requires writing a program implementing the algorithm and

running the program with inputs of varying size and composition. It uses a function, like

the built-in clock() function, to get an accurate measure of the actual running time, then

analysis is done by plotting the results.

Limitations of Experiments

• It is necessary to implement the algorithm, which may be difficult

• Results may not be indicative of the running time on other inputs not included in

the experiment.

• In order to compare two algorithms, the same hardware and software

environments must be used

Theoretical Analysis: It uses a high-level description of the algorithm instead of an

implementation. Analysis characterizes running time as a function of the input size, n,

and takes into account all possible inputs. This allows us to evaluate the speed of an

Dept of CSE,SJBIT 3

Analysis and Design of Algorithm 10CS43

algorithm independent of the hardware/software environment. Therefore theoretical

analysis can be used for analyzing any algorithm

Framework for Analysis

We use a hypothetical model with following assumptions

• Total time taken by the algorithm is given as a function on its input size

• Logical units are identified as one step

• Every step require ONE unit of time

• Total time taken = Total Num. of steps executed

Input’s size: Time required by an algorithm is proportional to size of the problem

instance. For e.g., more time is required to sort 20 elements than what is required to sort 10 elements.

Units for Measuring Running Time: Count the number of times an algorithm‘s basic operation is

executed. (Basic operation: The most important operation of the algorithm, the operation contributing

the most to the total running time.) For e.g., The basic operation is usually the most time-

consuming operation in the algorithm‘s innermost loop.

Consider the following example:

ALGORITHM sum_of_numbers (A[0… n-1])

// Functionality : Finds the Sum

// Input : Array of n numbers

// Output : Sum of „n‟ numbers

i 0

sum 0

while i < n

sum sum + A[i] n

i i + 1

return sum

Total number of steps for basic operation execution, C (n) = n

NOTE:

Constant of fastest growing term is insignificant: Complexity theory is an Approximation

theory. We are not interested in exact time required by an algorithm to solve the problem. Rather we

are interested in order of growth. i.e How much faster will algorithm run on computer that is twice as

Dept of CSE,SJBIT 4

Analysis and Design of Algorithm 10CS43

fast? How much longer does it take to solve problem of double input size? We can crudely estimate

running time by

T (n) ≈ Cop � C (n)

Where,

T (n): running time as a function of n.

Cop : running time of a single operation.

C (n): number of basic operations as a function of n.

Order of Growth: For order of growth, consider only the leading term of a formula and ignore the

constant coefficient. The following is the table of values of several functions important for analysis of

algorithms.

Worst-case, Best-case, Average case efficiencies

Algorithm efficiency depends on the input size n. And for some algorithms efficiency depends

on type of input. We have best, worst & average case efficiencies.

• Worst-case efficiency: Efficiency (number of times the basic operation will be executed) for

the worst case input of size n. i.e. The algorithm runs the longest among all possible inputs of

size n.

• Best-case efficiency: Efficiency (number of times the basic operation will be executed) for the

best case input of size n. i.e. The algorithm runs the fastest among all possible inputs of size n.

• Average-case efficiency: Average time taken (number of times the basic operation will be

executed) to solve all the possible instances (random) of the input. NOTE: NOT the average of

worst and best case

Dept of CSE,SJBIT 5

Analysis and Design of Algorithm 10CS43

Asymptotic Notations

Asymptotic notation is a way of comparing functions that ignores constant factors and small input

sizes. Three notations used to compare orders of growth of an algorithm‘s basic operation count are:

O, Ω, Θ notations

Big Oh- O notation

Definition:

A function t(n) is said to be in O(g(n)), denoted t(n) �O(g(n)), if t(n) is bounded above by some

constant multiple of g(n) for all large n, i.e., if there exist some positive constant c and some

nonnegative integer n0 such that

t(n) ≤ cg(n) for all n ≥ n0

Big Omega- Ω notation

Definition:

A function t (n) is said to be in Ω (g(n)), denoted t(n) � Ω (g (n)), if t (n) is bounded below by

some constant multiple of g (n) for all large n, i.e., if there exist some positive constant c and some

nonnegative integer n0 such that

t(n) ≥ cg(n) for all n ≥ n0

Dept of CSE,SJBIT 6

Analysis and Design of Algorithm 10CS43

Big Theta- Θ notation

Definition:

A function t (n) is said to be in Θ(g (n)), denoted t(n) � Θ(g (n)), if t (n) is bounded both above and

below by some constant multiple of g (n) for all large n, i.e., if there exist some positive constant c1

and c2 and some nonnegative integer n0 such that

c2 g (n) ≤ t (n) ≤ c1 g (n) for all n ≥ n0

Dept of CSE,SJBIT 7

Analysis and Design of Algorithm 10CS43

Basic Efficiency classes

The time efficiencies of a large number of algorithms fall into only a few classes.

fast

low time efficiency

slow

1.2 Mathematical Analysis of Non-Recursive and Recursive Algorithms

Mathematical analysis (Time Efficiency) of Non-recursive Algorithms

General plan for analyzing efficiency of non-recursive algorithms:

1. Decide on parameter n indicating input size

2. Identify algorithm‘s basic operation

3. Check whether the number of times the basic operation is executed depends only on the input

size n. If it also depends on the type of input, investigate worst, average, and best case

efficiency separately.

4. Set up summation for C(n) reflecting the number of times the algorithm‘s basic operation is

executed.

5. Simplify summation using standard formulas

Example: Finding the largest element in a given array

ALOGORITHM MaxElement(A[0..n-1])

//Determines the value of largest element in a given array

//nput: An array A[0..n-1] of real numbers

//Output: The value of the largest element in A

currentMax ← A[0]

for i ← 1 to n - 1 do

if A[i] > currentMax

Dept of CSE,SJBIT 8

1

log n

n

n log n

n2

n3

2n

n!

High time efficiency
constant

logarithmic

linear

n log n

quadratic

cubic

exponential

factorial

Analysis and Design of Algorithm 10CS43

currentMax ← A[i]

return currentMax

Analysis:

1. Input size: number of elements = n (size of the array)

2. Basic operation:

a) Comparison

b) Assignment

NO best, worst, average cases.

Let C (n) denotes number of comparisons: Algorithm makes one comparison on

each execution of the loop, which is repeated for each value of the loop‘s variable

i within the bound between 1 and n – 1.

Example: Element uniqueness problem

Algorithm UniqueElements (A[0..n-1])

//Checks whether all the elements in a given array are distinct

//Input: An array A[0..n-1]

//Output: Returns true if all the elements in A are distinct and false otherwise

for i 0 to n - 2 do

for j i + 1 to n – 1 do

if A[i] = = A[j]

return false

return true

Dept of CSE,SJBIT 9

3.

4.

Analysis and Design of Algorithm 10CS43

Analysis

1. Input size: number of elements = n (size of the array)

2. Basic operation: Comparison

3. Best, worst, average cases EXISTS.

Worst case input is an array giving largest comparisons.

• Array with no equal elements

• Array with last two elements are the only pair of equal elements

4. Let C (n) denotes number of comparisons in worst case: Algorithm makes one

comparison for each repetition of the innermost loop i.e., for each value of the

loop‘s variable j between its limits i + 1 and n – 1; and this is repeated for each value of the outer

loop i.e, for each value of the loop‘s variable i between its

limits 0 and n – 2

Dept of CSE,SJBIT 10

Analysis and Design of Algorithm 10CS43

Mathematical analysis (Time Efficiency) of recursive Algorithms

General plan for analyzing efficiency of recursive algorithms:

1. Decide on parameter n indicating input size

2. Identify algorithm‘s basic operation

3. Check whether the number of times the basic operation is executed depends only

on the input size n. If it also depends on the type of input, investigate worst,

average, and best case efficiency separately.

4. Set up recurrence relation, with an appropriate initial condition, for the number

of times the algorithm‘s basic operation is executed.

5. Solve the recurrence.

Example: Factorial function

ALGORITHM Factorial (n)

//Computes n! recursively

//Input: A nonnegative integer n

//Output: The value of n!

if n = = 0

Dept of CSE,SJBIT 11

Analysis and Design of Algorithm 10CS43

return 1

else

return Factorial (n – 1) * n

Analysis:

1. Input size: given number = n

2. Basic operation: multiplication

3. NO best, worst, average cases.

4. Let M (n) denotes number of multiplications.

M (n) = M (n – 1) + 1 for n > 0

M (0) = 0 initial condition

Where: M (n – 1) : to compute Factorial (n – 1)

1 :to multiply Factorial (n – 1) by n

5. Solve the recurrence: Solving using “Backward substitution method”:

M (n) = M (n – 1) + 1

= [M (n – 2) + 1] + 1

= M (n – 2) + 2

= [M (n – 3) + 1] + 3

= M (n – 3) + 3

…

In the ith recursion, we have

= M (n – i) + i

When i = n, we have

= M (n – n) + n = M (0) + n

Since M (0) = 0

= n

M (n) � Θ (n)

Dept of CSE,SJBIT 12

Analysis and Design of Algorithm 10CS43

Example: Find the number of binary digits in the binary representation of a positive

decimal integer

ALGORITHM BinRec (n)

//Input: A positive decimal integer n

//Output: The number of binary digits in n‟s binary representation

if n = = 1

return 1

else

return BinRec (└ n/2 ┘) + 1

Analysis:

1. Input size: given number = n

2. Basic operation: addition

3. NO best, worst, average cases.

4. Let A (n) denotes number of additions.

A (n) = A (└ n/2 ┘) + 1 for n > 1

A (1) = 0 initial condition

Where: A (└ n/2 ┘) : to compute BinRec (└ n/2 ┘)

1 : to increase the returned value by 1

5. Solve the recurrence:

A (n) = A (└ n/2 ┘) + 1 for n > 1

Assume n = 2k (smoothness rule)

A (2k) = A (2k-1) + 1 for k > 0; A (20) = 0

Solving using “Backward substitution method”:

A (2k) = A (2k-1) + 1

= [A (2k-2) + 1] + 1

= A (2k-2) + 2

= [A (2k-3) + 1] + 2

= A (2k-3) + 3

…

In the ith recursion, we have

= A (2k-i) + i

Dept of CSE,SJBIT 13

Analysis and Design of Algorithm 10CS43

When i = k, we have

= A (2k-k) + k = A (20) + k

Since A (20) = 0

A (2k)

Since n = 2k, HENCE k = log2 n

A (n) = log2 n

A (n) � Θ (log n)

1.2 Brute Force Approaches:

Introduction

Brute force is a straightforward approach to problem solving, usually directly based on the

problem‘s statement and definitions of the concepts involved.Though rarely a source of clever or

algorithms,the brute-force approach should not be overlooked as an

strategies, brute force is applicable to a very wide variety of

problems.For some important problems (e.g., sorting, searching, string matching),the brute-force

approach yields reasonable algorithms of at least some practical value with no limitation on instance

size Even if too inefficient in general, a brute-force algorithm can still be useful for solving small-size

instances of a problem. A brute-force algorithm can serve an important theoretical or educational

purpose.

1.3 Selection Sort and Bubble Sort

Problem:Given a list of n orderable items (e.g., numbers, characters from some alphabet,

character strings), rearrange them in nondecreasing order.

Selection Sort

ALGORITHM SelectionSort(A [0..n - 1])

//The algorithm sorts a given array by selection sort

//Input: An array A[0..n - 1] of orderable elements

//Output: Array A[0..n - 1] sorted in ascending order

for i=0 to n - 2 do

min=i

for j=i + 1 to n - 1 do

if A[j]<A[min] min=j

Dept of CSE,SJBIT 14

= k

important algorithm efficient

design strategy. Unlike some of the other

Analysis and Design of Algorithm 10CS43

swap A[i] an

Example:

Performance Analysis of the selection sort algorithm:

The input‘s size is given by the number of elements n.

The algorithm‘s basic operation is the key comparison A[j]<A[min]. The number of times it is

executed depends only on the array‘s size and is given by

Thus, selection sort is a O(n2) algorithm on all inputs. The number of key swaps is only O(n)

or, more precisely, n-1 (one for each repetition of the i loop).This property distinguishes selection sort

positively from many other sorting algorithms.

Bubble Sort

Compare adjacent elements of the list and exchange them if they are out of order.Then we

repeat the process,By doing it repeatedly, we end up ‗bubbling up‘ the largest element to the last

position on the list

ALGORITHM

BubbleSort(A [0..n - 1])

//The algorithm sorts array A[0..n - 1] by bubble sort

//Input: An array A[0..n - 1] of orderable elements

//Output: Array A[0..n - 1] sorted in ascending order

for i=0 to n - 2 do

for j=0 to n - 2 - i do

Dept of CSE,SJBIT 15

Analysis and Design of Algorithm 10CS43

if A[j + 1]<A[j]

swap A[j] and A[j + 1]

Example

The first 2 passes of bubble sort on the list 89, 45, 68, 90, 29, 34, 17. A new line is shown after

a swap of two elements is done. The elements to the right of the vertical bar are in their final positions

and are not considered in subsequent iterations of the algorithm

Bubble Sort the analysis

Clearly, the outer loop runs n times. The only complexity in this analysis in the inner loop. If

we think about a single time the inner loop runs, we can get a simple bound by noting that it can never

loop more than n times. Since the outer loop will make the inner loop complete n times, the

comparison can't happen more than O(n2) times.

The number of key comparisons for the bubble sort version given above is the same for all

arrays of size n.

The number of key swaps depends on the input. For the worst case of decreasing arrays, it is

the same as the number of key comparisons.

Dept of CSE,SJBIT 16

Analysis and Design of Algorithm 10CS43

Observation: if a pass through the list makes no exchanges, the list has been sorted and we can

stop the algorithm Though the new version runs faster on some inputs, it is still in O(n2) in the worst

and average cases. Bubble sort is not very good for big set of input. How ever bubble sort is very

simple to code.

General Lesson From Brute Force Approach

A first application of the brute-force approach often results in an algorithm that can be

improved with a modest amount of effort. Compares successive elements of a given list with a given

search key until either a match is encountered (successful search) or the list is exhausted without

finding a match (unsuccessful search)

1. 4 Sequential Search and Brute Force String Matching.

Sequential Search

ALGORITHM SequentialSearch2(A [0..n], K)

//The algorithm implements sequential search with a search key as a sentinel

//Input: An array A of n elements and a search key K

//Output: The position of the first element in A[0..n - 1] whose value is

// equal to K or -1 if no such element is found

A[n]=K

i=0

while A[i] = K do

i=i + 1

if i < n return i

else return

Brute-Force String Matching

Given a string of n characters called the text and a string of m characters (m = n) called the

pattern, find a substring of the text that matches the pattern. To put it more precisely, we want to find

i—the index of the leftmost character of the first matching

Dept of CSE,SJBIT 17

Analysis and Design of Algorithm 10CS43

substring in the text—such that

ti = p0, . . . , ti+j = pj , . . . , ti+m-1 = pm-1:

t0 . . . ti . . . ti+j . . . ti+m-1 . . . tn-1 text T

p0 . . . pj . . . pm-1 pattern P

1. Pattern: 001011

Text: 10010101101001100101111010

2. Pattern: happy

Text: It is never too late to have a happy childho

The algorithm shifts the pattern almost always after a single character comparison. in the

worst case, the algorithm may have to make all m comparisons before shifting the pattern, and this can

happen for each of the n - m + 1 tries. Thus, in the worst case, the algorithm is in θ(nm).

Dept of CSE,SJBIT 18

Analysis and Design of Algorithm 10CS43

UNIT - 2

DIVIDE & CONQUER

1.1 Divide and Conquer

1.2 General Method

1.3 Binary Search

1.4 Merge Sort

1.5 Quick Sort and its performance

1.1 Divide and Conquer

Definition:

Divide & conquer is a general algorithm design strategy with a general plan as follows:

1. DIVIDE:

A problem‘s instance is divided into several smaller instances of the same

problem, ideally of about the same size.

2. RECUR:

Solve the sub-problem recursively.

3. CONQUER:

If necessary, the solutions obtained for the smaller instances are combined to get a

solution to the original instance.

Diagram 1 shows the general divide & conquer plan

Problem

of size n

Problem Problem

of size n of size n

Solution to sub Solution to sub

problem 1 problem 1

Solution to

original

problem

NOTE:

Dept of CSE,SJBIT 19

Analysis and Design of Algorithm 10CS43

The base case for the recursion is sub-problem of constant size.

Advantages of Divide & Conquer technique:

• For solving conceptually difficult problems like Tower Of Hanoi, divide &

conquer is a powerful tool

• Results in efficient algorithms

• Divide & Conquer algorithms are adapted foe execution in multi-processor

machines

• Results in algorithms that use memory cache efficiently.

Limitations of divide & conquer technique:

• Recursion is slow

• Very simple problem may be more complicated than an iterative approach.

Example: adding n numbers etc

1.2 General Method

General divide & conquer recurrence:

An instance of size n can be divided into b instances of size n/b, with ―a‖ of them needing

to be solved. [a ≥ 1, b > 1].

Assume size n is a power of b. The recurrence for the running time T(n) is as follows:

T(n) = aT(n/b) + f(n)

where:

f(n) – a function that accounts for the time spent on dividing the problem into

smaller ones and on combining their solutions

Therefore, the order of growth of T(n) depends on the values of the constants a & b and

the order of growth of the function f(n).

Master theorem
Theorem: If f(n) Є Θ (nd) with d ≥ 0 in recurrence equation

T(n) = aT(n/b) + f(n),

then

Θ (nd) if a < bd

T(n) = Θ (ndlog n) if a = bd

Θ (nlog
b

a) if a > bd

Example:

Let T(n) = 2T(n/2) + 1, solve using master theorem.

Solution:

Here: a = 2

b = 2

f(n) = Θ(1)

Dept of CSE,SJBIT 20

Analysis and Design of Algorithm 10CS43

d = 0

Therefore:

a > bd i.e., 2 > 20

Case 3 of master theorem holds good. Therefore:

T(n) Є Θ (nlog
b

a)

Є Θ (nlog
2

2)

Є Θ (n)

1.3Binary Search

Description:

Binary tree is a dichotomic divide and conquer search algorithm. Ti inspects the middle

element of the sorted list. If equal to the sought value, then the position has been found.

Otherwise, if the key is less than the middle element, do a binary search on the first half,

else on the second half.

Algorithm:
Algorithm can be implemented as recursive or non-recursive algorithm.

ALGORITHM BinSrch (A[0 … n-1], key)

//implements non-recursive binary search

//i/p: Array A in ascending order, key k

//o/p: Returns position of the key matched else -1

l 0

r n-1

while l ≤ r do

m (l + r) / 2

if key = = A[m]

return m

else

if key < A[m]

r m-1

else

l m+1

return -1

Analysis:
• Input size: Array size, n

• Basic operation: key comparison

• Depend on

Best – key matched with mid element

Worst – key not found or key sometimes in the list

• Let C(n) denotes the number of times basic operation is executed. Then

Cworst(n) = Worst case efficiency. Since after each comparison the algorithm

divides the problem into half the size, we have

Cworst(n) = Cworst(n/2) + 1 for n > 1

Dept of CSE,SJBIT 21

Analysis and Design of Algorithm 10CS43

C(1) = 1

• Solving the recurrence equation using master theorem, to give the number of

times the search key is compared with an element in the array, we have:

C(n) = C(n/2) + 1

a = 1

b = 2

f(n) = n0 ; d = 0

case 2 holds:

C(n) = Θ (ndlog n)

= Θ (n0log n)

= Θ (log n)

Applications of binary search:
• Number guessing game

• Word lists/search dictionary etc

Advantages:
• Efficient on very big list

• Can be implemented iteratively/recursively

Limitations:
• Interacts poorly with the memory hierarchy

• Requires given list to be sorted

• Due to random access of list element, needs arrays instead of linked list.

1.4Merge Sort
Definition:

Merge sort is a sort algorithm that splits the items to be sorted into two groups,

recursively sorts each group, and merges them into a final sorted sequence.

Features:

• Is a comparison based algorithm

• Is a stable algorithm

• Is a perfect example of divide & conquer algorithm design strategy

• It was invented by John Von Neumann

Algorithm:

ALGORITHM Mergesort (A[0… n-1])

//sorts array A by recursive mergesort

//i/p: array A

//o/p: sorted array A in ascending order

if n > 1

copy A[0… (n/2 -1)] to B[0… (n/2 -1)]

copy A[n/2… n -1)] to C[0… (n/2 -1)]

Mergesort (B[0… (n/2 -1)])

Mergesort (C[0… (n/2 -1)])

Merge (B, C, A)

Dept of CSE,SJBIT 22

Analysis and Design of Algorithm 10CS43

ALGORITHM Merge (B[0… p-1], C[0… q-1], A[0… p+q-1])

//merges two sorted arrays into one sorted array

//i/p: arrays B, C, both sorted

//o/p: Sorted array A of elements from B & C

I →0

j→0

k→0

while i < p and j < q do

if B[i] ≤ C[j]

A[k] →B[i]

i→i + 1

else

A[k] →C[j]

j→j + 1

k→k + 1

if i == p

copy C [j… q-1] to A [k… (p+q-1)]

else

copy B [i… p-1] to A [k… (p+q-1)]

Example:
Apply merge sort for the following list of elements: 6, 3, 7, 8, 2, 4, 5, 1

6 3 7 8 2 4 5 1

6 3 7 8 2 4 5 1

6 3 7 8 2 4 5 1

6 3 7 8 2 4 5 1

3 6 7 8 2 4 1 5

3 6 7 8 1 2 4 5

1 2 3 4 5 6 7 8

Dept of CSE,SJBIT 23

Analysis and Design of Algorithm 10CS43

Analysis:

• Input size: Array size, n

• Basic operation: key comparison

• Best, worst, average case exists:

Worst case: During key comparison, neither of the two arrays becomes empty

before the other one contains just one element.

• Let C(n) denotes the number of times basic operation is executed. Then

C(n) = 2C(n/2) + Cmerge(n) for n > 1

C(1) = 0

where, Cmerge(n) is the number of key comparison made during the merging stage.

In the worst case:

Cmerge(n) = 2 Cmerge(n/2) + n-1 for n > 1

Cmerge(1) = 0

• Solving the recurrence equation using master theorem:

C(n) = 2C(n/2) + n-1 for n > 1

C(1) = 0

Here a = 2

b = 2

f(n) = n; d = 1

Therefore 2 = 21, case 2 holds

C(n) = Θ (ndlog n)

= Θ (n1log n)

= Θ (n log n)

Advantages:
• Number of comparisons performed is nearly optimal.

• Mergesort will never degrade to O(n2)

• It can be applied to files of any size

Limitations:
• Uses O(n) additional memory.

1.6 Quick Sort and its performance
Definition:

Quick sort is a well –known sorting algorithm, based on divide & conquer approach. The

steps are:

1. Pick an element called pivot from the list

2. Reorder the list so that all elements which are less than the pivot come before the

pivot and all elements greater than pivot come after it. After this partitioning, the

pivot is in its final position. This is called the partition operation

3. Recursively sort the sub-list of lesser elements and sub-list of greater elements.

Features:

• Developed by C.A.R. Hoare

• Efficient algorithm

• NOT stable sort

• Significantly faster in practice, than other algorithms

Dept of CSE,SJBIT 24

Analysis and Design of Algorithm 10CS43

ALGORITHM Quicksort (A[l …r])

//sorts by quick sort

//i/p: A sub-array A[l..r] of A[0..n-1],defined by its left and right indices l and r

//o/p: The sub-array A[l..r], sorted in ascending order

if l < r

Partition (A[l..r]) // s is a split position

Quicksort(A[l..s-1])

Quicksort(A[s+1..r]

ALGORITHM Partition (A[l ..r])

//Partitions a sub-array by using its first element as a pivot

//i/p: A sub-array A[l..r] of A[0..n-1], defined by its left and right indices l and r (l < r)

//o/p: A partition of A[l..r], with the split position returned as this function‘s value

p→A[l]

i→l

j→r + 1;

Repeat

repeat i→i + 1 until A[i] >=p //left-right scan

repeat j→j – 1 until A[j] < p //right-left scan

if (i < j) //need to continue with the scan

swap(A[i], a[j])

until i >= j //no need to scan

swap(A[l], A[j])

return j

Example: Sort by quick sort the following list: 5, 3, 1, 9, 8, 2, 4, 7, show recursion tree.

Dept of CSE,SJBIT 25

Analysis and Design of Algorithm 10CS43

Analysis:

• Input size: Array size, n

• Basic operation: key comparison

• Best, worst, average case exists:

Best case: when partition happens in the middle of the array each time.

Worst case: When input is already sorted. During key comparison, one half is

empty, while remaining n-1 elements are on the other partition.

• Let C(n) denotes the number of times basic operation is executed in worst case:

Then

C(n) = C(n-1) + (n+1) for n > 1 (2 sub-problems of size 0 and n-1 respectively)

C(1) = 1

Best case:

C(n) = 2C(n/2) + Θ(n) (2 sub-problems of size n/2 each)

• Solving the recurrence equation using backward substitution/ master theorem,

we have:

C(n) = C(n-1) + (n+1) for n > 1; C(1) = 1

C(n) = Θ (n2)

C(n) = 2C(n/2) + Θ(n).

= Θ (n1log n)

= Θ (n log n)

NOTE:

The quick sort efficiency in average case is Θ(n log n) on random input.

Dept of CSE,SJBIT 26

Analysis and Design of Algorithm 10CS43

UNIT - 3

THE GREEDY METHOD

3.1 The General Method

3.2 Knapsack Problem

3.3 Job Sequencing with Deadlines

3.4 Minimum-Cost Spanning Trees

3.5 Prim’sAlgorithm

3.6 Kruskal’s Algorithm

3.7 Single Source Shortest Paths.

3.1The General Method

Definition:

Greedy technique is a general algorithm design strategy, built on following elements:

• configurations: different choices, values to find

• objective function: some configurations to be either maximized or minimized

The method:

• Applicable to optimization problems ONLY

• Constructs a solution through a sequence of steps

• Each step expands a partially constructed solution so far, until a complete solution

to the problem is reached.

On each step, the choice made must be

• Feasible: it has to satisfy the problem‘s constraints

• Locally optimal: it has to be the best local choice among all feasible choices

available on that step

• Irrevocable: Once made, it cannot be changed on subsequent steps of the

algorithm

NOTE:

• Greedy method works best when applied to problems with the greedy-choice

property

• A globally-optimal solution can always be found by a series of local

improvements from a starting configuration.

Greedy method vs. Dynamic programming method:

• LIKE dynamic programming, greedy method solves optimization problems.

• LIKE dynamic programming, greedy method problems exhibit optimal

substructure

• UNLIKE dynamic programming, greedy method problems exhibit the greedy

choice property -avoids back-tracing.

Applications of the Greedy Strategy:

Dept of CSE,SJBIT 27

Analysis and Design of Algorithm 10CS43

• Optimal solutions:

Change making

Minimum Spanning Tree (MST)

Single-source shortest paths

Huffman codes

• Approximations:

Traveling Salesman Problem (TSP)

Fractional Knapsack problem

3.2 Knapsack problem

• One wants to pack n items in a luggage

• The ith item is worth vi dollars and weighs wi pounds

• Maximize the value but cannot exceed W pounds

• vi , wi, W are integers

• 0-1 knapsack  each item is taken or not taken

• Fractional knapsack  fractions of items can be taken

• Both exhibit the optimal-substructure property

• 0-1: If item j is removed from an optimal packing, the remaining packing is an optimal

packing with weight at most W-wj

• Fractional: If w pounds of item j is removed from an optimal packing, the remaining

packing is an optimal packing with weight at most W-w that can be taken from other n-1

items plus wj – w of item j

Greedy Algorithm for Fractional Knapsack problem

• Fractional knapsack can be solvable by the greedy strategy

• Compute the value per pound vi/wi for each item

• Obeying a greedy strategy, take as much as possible of the item with the greatest value per

pound.

• If the supply of that item is exhausted and there is still more room, take as much as

possible of the item with the next value per pound, and so forth until there is no more

room

• O(n lg n) (we need to sort the items by value per pound)

O-1 knapsack is harder

• knapsack cannot be solved by the greedy strategy

Dept of CSE,SJBIT 28

Analysis and Design of Algorithm 10CS43

• Unable to fill the knapsack to capacity, and the empty space lowers the effective value per

pound of the packing

• We must compare the solution to the sub-problem in which the item is included with the

solution to the sub-problem in which the item is excluded before we can make the choice

3.3 Job sequencing with deadlines

The problem is stated as below.

• There are n jobs to be processed on a machine.

• Each job i has a deadline di≥ 0 and profit pi≥0 .

• Pi is earned iff the job is completed by its deadline.

• The job is completed if it is processed on a machine for unit time.

• Only one machine is available for processing jobs.

• Only one job is processed at a time on the machine

• A feasible solution is a subset of jobs J such that each job is completed by its deadline.

• An optimal solution is a feasible solution with maximum profit value.

Example : Let n = 4, (p1,p2,p3,p4) = (100,10,15,27), (d1,d2,d3,d4) = (2,1,2,1)

Dept of CSE,SJBIT 29

Analysis and Design of Algorithm 10CS43

• Consider the jobs in the non increasing order of profits subject to the constraint that the resulting

job sequence J is a feasible solution.

• In the example considered before, the non-increasing profit vector is

(100 27 15 10) (2 1 2 1)

p1 p4 p3 p2 d1 d d3 d2

J = { 1} is a feasible one

J = { 1, 4} is a feasible one with processing sequence (4,1)

J = { 1, 3, 4} is not feasible

J = { 1, 2, 4} is not feasible

J = { 1, 4} is optimal

Theorem: Let J be a set of K jobs and

Σ = (i1,i2,….ik) be a permutation of jobs in J such that di1 ≤ di2 ≤…≤ dik.

• J is a feasible solution iff the jobs in J can be processed in the order Σ without violating any

deadly.

Proof:

• By definition of the feasible solution if the jobs in J can be processed in the order without

violating any deadline then J is a feasible solution.

Dept of CSE,SJBIT 30

Analysis and Design of Algorithm 10CS43

• So, we have only to prove that if J is a feasible one, then Σ represents a possible order in which

the jobs may be processed.

• Suppose J is a feasible solution. Then there exists Σ1 = (r1,r2,…,rk) such that

drj ≥ j, 1 ≤ j <k

i.e. dr1 ≥1, dr2 ≥ 2, …, drk ≥ k.

each job requiring an unit time.

• Σ = (i1,i2,…,ik) and Σ1 = (r1,r2,…,rk)

• Assume Σ 1 ≠ Σ. Then let a be the least index in which Σ 1 and Σ differ. i.e. a is such that ra
 ≠ ia.

• Let rb
 = ia, so b > a (because for all indices j less than a rj = ij).

• In Σ 1 interchange ra and rb.

• Σ = (i1,i2,… ia ib ik) [rb occurs before ra

• in i1,i2,…,ik]

• Σ 1 = (r1,r2,… ra rb … rk)

• i1=r1, i2=r2,…ia-1= ra-1, ia
 ≠ rb but ia

 = rb

• We know di1 ≤ di2 ≤ … dia ≤ dib ≤… ≤ dik.

• Since ia = rb, drb ≤ dra or dra ≥ drb.

• In the feasible solution dra ≥ a drb ≥ b

• So if we interchange ra and rb, the resulting permutation Σ11= (s1, … sk) represents an order with

the least index in which Σ11 and Σ differ is incremented by one.

• Also the jobs in Σ11 may be processed without violating a deadline.

• Continuing in this way, Σ1 can be transformed into Σ without violating any deadline.

• Hence the theorem is proved

GREEDY ALGORITHM FOR JOB SEQUENSING WITH DEADLINE

Procedure greedy job (D, J, n) J may be represented by

// J is the set of n jobs to be completed // one dimensional array J (1: K)

// by their deadlines // The deadlines are

J {1} D (J(1)) ≤ D(J(2)) ≤ .. ≤ D(J(K))

for I  2 to n do To test if JU {i} is feasible,

Dept of CSE,SJBIT 31

Analysis and Design of Algorithm 10CS43

If all jobs in JU{i} can be completed we insert i into J and verify

by their deadlines D(J®) ≤ r 1 ≤ r ≤ k+1

then J  JU{I}

end if

repeat

end greedy-job

Procedure JS(D,J,n,k)

// D(i) ≥ 1, 1≤ i ≤ n are the deadlines //

// the jobs are ordered such that //

// p1 ≥ p2 ≥ ……. ≥ pn //

// in the optimal solution ,D(J(i) ≥ D(J(i+1)) //

// 1 ≤ i ≤ k //

integer D(o:n), J(o:n), i, k, n, r

D(0) J(0)  0

// J(0) is a fictious job with D(0) = 0 //

K1; J(1) 1 // job one is inserted into J //

for i 2 to do // consider jobs in non increasing order of pi //

// find the position of i and check feasibility of insertion //

r k // r and k are indices for existing job in J //

// find r such that i can be inserted after r //

while D(J(r)) > D(i) and D(i) ≠ r do

// job r can be processed after i and //

// deadline of job r is not exactly r //

r r-1 // consider whether job r-1 can be processed after i //

repeat

if D(J(r)) ≥ d(i) and D(i) > r then

// the new job i can come after existing job r; insert i into J at position r+1 //

for I  k to r+1 by –1 do

J(I+1) J(l) // shift jobs(r+1) to k right by//

//one position //

repeat

Dept of CSE,SJBIT 32

Analysis and Design of Algorithm 10CS43

if D(J(r)) ≥ d(i) and D(i) > r then

// the new job i can come after existing job r; insert i into J at position r+1 //

for I  k to r+1 by –1 do

J(I+1) J(l) // shift jobs(r+1) to k right by//

//one position //

Repeat

COMPLEXITY ANALYSIS OF JS ALGORITHM

• Let n be the number of jobs and s be the number of jobs included in the solution.

• The loop between lines 4-15 (the for-loop) is iterated (n-1)times.

• Each iteration takes O(k) where k is the number of existing jobs.

∴ The time needed by the algorithm is 0(sn) s ≤ n so the worst case time is 0(n2).

If di = n - i+1 1 ≤ i ≤ n, JS takes θ(n2) time

D and J need θ(s) amount of space.

3.4 Minimum-Cost Spanning Trees

Spanning Tree

Spanning tree is a connected acyclic sub-graph (tree) of the given graph (G) that includes

all of G‘s vertices

Example: Consider the following graph

1

2

3

The spanning trees for the above graph are as follows:

1

b b
a

2

d

c

Weight (T1) = 9

Dept of CSE,SJBIT

b

d

a

5

c

1

a

3

b

d

1

2

3

a

c

d 5
5

c

Weight (T2) = 8 Weight (T3) = 6

33

Analysis and Design of Algorithm 10CS43

Minimum Spanning Tree (MST)

Definition:

MST of a weighted, connected graph G is defined as: A spanning tree of G with

minimum total weight.

Example: Consider the example of spanning tree:

For the given graph there are three possible spanning trees. Among them the spanning

tree with the minimum weight 6 is the MST for the given graph

Question: Why can‘t we use BRUTE FORCE method in constructing MST ?

Answer: If we use Brute force method-

• Exhaustive search approach has to be applied.

• Two serious obstacles faced:

1. The number of spanning trees grows exponentially with graph size.

2. Generating all spanning trees for the given graph is not easy.

MST Applications:

• Network design.

Telephone, electrical, hydraulic, TV cable, computer, road

• Approximation algorithms for NP-hard problems.

Traveling salesperson problem, Steiner tree

• Cluster analysis.

• Reducing data storage in sequencing amino acids in a protein

• Learning salient features for real-time face verification

• Auto config protocol for Ethernet bridging to avoid cycles in a network, etc

3.5 Prim’s Algorithm

Some useful definitions:
• Fringe edge: An edge which has one vertex is in partially constructed tree Ti and

the other is not.

• Unseen edge: An edge with both vertices not in Ti

Algorithm:
ALGORITHM Prim (G)

//Prim‘s algorithm for constructing a MST

//Input: A weighted connected graph G = { V, E }

//Output: ET the set of edges composing a MST of G

// the set of tree vertices can be initialized with any vertex

VT → { v0}

ET → Ø

for i→ 1 to |V| - 1 do

Find a minimum-weight edge e* = (v*, u*) among all the edges (v, u) such

that v is in VT and u is in V - VT

VT → VT U { u*}

Dept of CSE,SJBIT 34

Analysis and Design of Algorithm 10CS43

ET → ET U { e*}

return ET

STEP 1: Start with a tree, T0, consisting of one vertex

STEP 2: ―Grow‖ tree one vertex/edge at a time

• Construct a series of expanding sub-trees T1, T2, … Tn-1.

• At each stage construct Ti + 1 from Ti by adding the minimum weight edge

connecting a vertex in tree (Ti) to one vertex not yet in tree, choose from

“fringe” edges (this is the “greedy” step!)

Algorithm stops when all vertices are included

Example:

Apply Prim‘s algorithm for the following graph to find MST.

1

4

5

2

6
e

Remaining

vertices

b (a , 3)

c (- , ∞)

d (- , ∞)

e (a , 6)

f (a , 5)

c (b , 1)

d (- , ∞)

e (a , 6)

f (b , 4)

d (c , 6)

e (a , 6)

f (b , 4)

c

8

3

6

d

Graph

b

1
b

1
b

4

f

b
4

5

3

a

Solution:

Tree

vertices

a (-, -)

b (a, 3)

c (b, 1)

Dept of CSE,SJBIT

f

a

3

a

3

a

c

c

35

Analysis and Design of Algorithm 10CS43

1

b c
3 4

d (f , 5)

e (f , 2)

d (f , 5)

2

e

Algorithm stops since all vertices

are included.

The weight of the minimum spanning

tree is 15

Efficiency:

Efficiency of Prim‘s algorithm is based on data structure used to store priority queue.

• Unordered array: Efficiency: Θ(n2)

• Binary heap: Efficiency: Θ(m log n)

• Min-heap: For graph with n nodes and m edges: Efficiency: (n + m) log n

Conclusion:

• Prim‘s algorithm is a ―vertex based algorithm‖

• Prim‘s algorithm ―Needs priority queue for locating the nearest vertex.‖ The

choice of priority queue matters in Prim implementation.

o Array - optimal for dense graphs

o Binary heap - better for sparse graphs

o Fibonacci heap - best in theory, but not in practice

Dept of CSE,SJBIT 36

a

1

b

3 4

a f

f

2

e

c

5

f (b, 4)

e (f, 2)

d(f, 5)

d

Analysis and Design of Algorithm 10CS43

3.6 Kruskal’s Algorithm

Algorithm:

ALGORITHM Kruskal (G)

//Kruskal‘s algorithm for constructing a MST

//Input: A weighted connected graph G = { V, E }

//Output: ET the set of edges composing a MST of G

Sort E in ascending order of the edge weights

// initialize the set of tree edges and its size

ET→Ø

edge_counter →0

//initialize the number of processed edges

K →0

while edge_counter < |V| - 1

k→k + 1

if ET U { ei k} is acyclic

ET →ET U { ei k }

edge_counter →edge_counter + 1

return ET

The method:

STEP 1: Sort the edges by increasing weight

STEP 2: Start with a forest having |V| number of trees.

STEP 3: Number of trees are reduced by ONE at every inclusion of an edge

At each stage:

• Among the edges which are not yet included, select the one with minimum

weight AND which does not form a cycle.

• the edge will reduce the number of trees by one by combining two trees of

the forest

Algorithm stops when |V| -1 edges are included in the MST i.e : when the number of

trees in the forest is reduced to ONE.

Dept of CSE,SJBIT 37

Analysis and Design of Algorithm 10CS43

Example:

Apply Kruskal‘s algorithm for the following graph to find MST.

1

b c
3

a

Solution:

The list of edges is:

Edge

Weight

Sort the edges in ascending order:

Edge

Weight

Edge

Weight

Insertion

status

Insertion

order

Edge

Weight

Insertion

status

Insertion

order

Dept of CSE,SJBIT 38

4

5

6

ae bc

6 1

6

d

cd df de ef

6 5 8 2

df ae cd de

5 6 6 8

1
c

f

d

e

1

c

f d

2

e

5

8

bf cf

4 4

cf af

4 5

b

b

f

2

e

4

ab af

3 5

bc ef ab bf

1 2 3 4

bc

1

a

YES

1

ef

2

a

YES

2

Analysis and Design of Algorithm 10CS43

Edge

Weight

Insertion

status

Insertion

order

Edge

Weight

Insertion

status

Insertion

order

Edge

Weight

Insertion

status

order

Edge

Weight

Insertion

status

Insertion

order

Edge

Weight

Insertion

status

Insertion

order

Algorithm stops as |V| -1 edges are included in the MST

Dept of CSE,SJBIT 39

1

b c

f d

2

e

1

b c

a

YES

4

cf

4

NO

ab

3

YES

3

bf

4

3

a

3

f d

2

e

c

d

5
2

4

1

Insertion
-

af

5

NO

-

df

3
5

a
YES

5

b

4 f

e

Analysis and Design of Algorithm 10CS43

Efficiency:

Efficiency of Kruskal‘s algorithm is based on the time needed for sorting the edge

weights of a given graph.

• With an efficient sorting algorithm: Efficiency: Θ(|E| log |E|)

Conclusion:

• Kruskal‘s algorithm is an ―edge based algorithm‖

• Prim‘s algorithm with a heap is faster than Kruskal‘s algorithm.

3.7 Single Source Shortest Paths.

Some useful definitions:

• Shortest Path Problem: Given a connected directed graph G with non-negative

weights on the edges and a root vertex r, find for each vertex x, a directed path P

(x) from r to x so that the sum of the weights on the edges in the path P (x) is as

small as possible.

Algorithm
• By Dutch computer scientist Edsger Dijkstra in 1959.

• Solves the single-source shortest path problem for a graph with nonnegative edge

weights.

• This algorithm is often used in routing.

E.g.: Dijkstra's algorithm is usually the working principle behind link-state

routing protocols

ALGORITHM Dijkstra(G, s)

//Input: Weighted connected graph G and source vertex s

//Output: The length Dv of a shortest path from s to v and its penultimate vertex Pv for

every vertex v in V

//initialize vertex priority in the priority queue

Initialize (Q)

for every vertex v in V do

Dv→∞ ; Pv→null // Pv , the parent of v

insert(Q, v, Dv) //initialize vertex priority in priority queue

ds→0

//update priority of s with ds, making ds, the minimum

Decrease(Q, s, ds)

VT→�

Dept of CSE,SJBIT 40

Analysis and Design of Algorithm 10CS43

for i→0 to |V| - 1 do

u*→DeleteMin(Q)

//expanding the tree, choosing the locally best vertex

VT→VT U {u*}

for every vertex u in V – VT that is adjacent to u* do

if Du* + w (u*, u) < Du

Du→Du + w (u*, u); Pu u*

Decrease(Q, u, Du)

The method

Dijkstra‘s algorithm solves the single source shortest path problem in 2 stages.

Stage 1: A greedy algorithm computes the shortest distance from source to all other

nodes in the graph and saves in a data structure.

Stage 2 : Uses the data structure for finding a shortest path from source to any vertex v.

• At each step, and for each vertex x, keep track of a “distance” D(x)

and a directed path P(x) from root to vertex x of length D(x).

• Scan first from the root and take initial paths P(r, x) = (r, x) with

D(x) = w(rx) when rx is an edge,

D(x) = ∞ when rx is not an edge.

For each temporary vertex y distinct from x, set

D(y) = min{ D(y), D(x) + w(xy) }

Example:
Apply Dijkstra‘s algorithm to find Single source shortest paths with vertex a as the

source.

1

c

4

5

2

8

e

Solution:

Length Dv of shortest path from source (s) to other vertices v and Penultimate vertex Pv

for every vertex v in V:

Da = 0 , Pa = null

Db = ∞ , Pb = null

Dc = ∞ , Pc = null

Dd = ∞ , Pd = null

De = ∞ , Pe = null

Df = ∞ , Pf = null

Dept of CSE,SJBIT 41

b
3 4

5

6

f

6

d a

Analysis and Design of Algorithm 10CS43

RemainingDistance & Path Graph

vertices vertex

Pa = a

Pb = [a, b]

Pc = null

Pd = null

Pe = [a, e]

Pf = [a, f]

Pa = a

Pb = [a, b]

Pc = [a,b,c]

Pd = null

Pe = [a, e]

Pf = [a, f]

Pa = a

Pb = [a, b]

Pc = [a,b,c]

Pd = [a,b,c,d]

Pe = [a, e]

Pf = [a, f]

Pa = a

Pb = [a, b]

Pc = [a,b,c]

Pd = [a,b,c,d]

Pe = [a, e]

Pf = [a, f]

Pa = a

Pb = [a, b]

Pc = [a,b,c]

Pd = [a,b,c,d]

Pe = [a, e]

Pf = [a, f]

• Doesn‘t work with negative weights

• Applicable to both undirected and directed graphs

• Use unordered array to store the priority queue: Efficiency = Θ(n2)

• Use min-heap to store the priority queue: Efficiency = O(m log n)

Dept of CSE,SJBIT 42

Tree

vertices

a (-, 0)

b (a, 3)

c (b, 4)

f (a, 5)

e (a, 6)

d(c, 10)

Conclusion:

)

b

1

3

a

3

a

a

a

6

b

3

a

Algorithm

edges to scan

Da = 0
b (a , 3)b = 3

c (- , ∞)

d (- , ∞)

e (a , 6)

f (a , 5)

Da = 0

c (b , 3+1)

d (- , ∞)

e (a , 6)

f (a , 5)

d (c , 4+6)

e (a , 6Dd =10

b

5

e

1

stops

D

Dc = ∞

Dd = ∞

De = 6

Df = 5

Db = 3

Dc = 4

Dd = ∞

De = 6

Df = 5

Da = 0

Db = 3

Dc = 4

c

f

c

6

d

since no

De = 6

Df = 5

Da = 0

Db = 3

Dc = 4
0)

De

Da = 0

Db = 3

Dc = 4

Dd=10

De = 6

Df = 5

d (c, 10)

d (c , 1D d =10

e (a , 6) = 6

Df = 5

f (a , 5)

Analysis and Design of Algorithm 10CS43

UNIT - 4

Dynamic Programming

4.1 The General Method

4.2 Warshall’s Algorithm

4.3 Floyd’s Algorithm for the All-Pairs Shortest Paths Problem

4.4 Single-Source Shortest Paths

4.5 General Weights 0/1 Knapsack

4.6 The Traveling Salesperson problem.

4.1 The General Method
Definition
Dynamic programming (DP) is a general algorithm design technique for solving

problems with overlapping sub-problems. This technique was invented by American

mathematician ―Richard Bellman‖ in 1950s.

Key Idea
The key idea is to save answers of overlapping smaller sub-problems to

computation.

Dynamic Programming Properties
• An instance is solved using the solutions for smaller instances.

• The solutions for a smaller instance might be needed multiple times, so store their

results in a table.

• Thus each smaller instance is solved only once.

• Additional space is used to save time.

Dynamic Programming vs. Divide & Conquer
LIKE divide & conquer, dynamic programming solves problems by combining solutions

to sub-problems. UNLIKE divide & conquer, sub-problems are NOT independent in

dynamic programming.

Dynamic Programming

Partitions a problem into

overlapping sub-problems

Stores solutions of sub-

problems: thus avoids

calculations of same quantity

twice

Bottom up algorithms: in which

the smallest sub-problems are

explicitly solved first and the

results of these used to construct

solutions to progressively larger

sub-instances

43

avoid re-

Divide & Conquer

Partitions a problem into independent

smaller sub-problems

Doesn‘t store solutions of sub-

problems. (Identical sub-problems

may arise - results in the same

computations are performed

repeatedly.)

1.

2.

3.

1.

2.

3.

Top down algorithms: which logically

progresses from the initial instance

down to the smallest sub-instances via

intermediate sub-instances.

Dept of CSE,SJBIT

Analysis and Design of Algorithm 10CS43

Dynamic Programming vs. Divide & Conquer: EXAMPLE
Computing Fibonacci Numbers

1. Using standard recursive formula:

0 if n=0

F(n) = 1 if n=1

F(n-1) + F(n-2) if n >1

Algorithm F(n)

// Computes the nth Fibonacci number recursively by using its definitions

// Input: A non-negative integer n

// Output: The nth Fibonacci number

if n==0 || n==1 then

return n

else

return F(n-1) + F(n-2)

Algorithm F(n): Analysis

• Is too expensive as it has repeated calculation of smaller Fibonacci numbers.

• Exponential order of growth.

F(n)

F(n-1) + F(n-2)

F(n-2) + F(n-3) F(n-3) + F(n-4)

2. Using Dynamic Programming:

Algorithm F(n)

// Computes the nth Fibonacci number by using dynamic programming method

// Input: A non-negative integer n

// Output: The nth Fibonacci number

A[0] 0

A[1] 1

for i 2 to n do

A[i] A[i-1] + A[i-2]

return A[n]

Algorithm F(n): Analysis

• Since it caches previously computed values, saves time from repeated

computations of same sub-instance

• Linear order of growth

Dept of CSE,SJBIT 44

Analysis and Design of Algorithm 10CS43

Rules of Dynamic Programming
1. OPTIMAL SUB-STRUCTURE: An optimal solution to a problem contains

optimal solutions to sub-problems

2. OVERLAPPING SUB-PROBLEMS: A recursive solution contains a ―small‖

number of distinct sub-problems repeated many times

3. BOTTOM UP FASHION: Computes the solution in a bottom-up fashion in the

final step

Three basic components of Dynamic Programming solution
The development of a dynamic programming algorithm must have the following three

basic components

1. A recurrence relation

2. A tabular computation

3. A backtracking procedure

Example Problems that can be solved using Dynamic Programming

method
1. Computing binomial co-efficient

2. Compute the longest common subsequence

3. Warshall‘s algorithm for transitive closure

4. Floyd‘s algorithm for all-pairs shortest paths

5. Some instances of difficult discrete optimization problems like knapsack problem

And traveling salesperson problem

4.2 Warshall’s Algorithm

Some useful definitions:

• Directed Graph: A graph whose every edge is directed is called directed graph

OR digraph

• Adjacency matrix: The adjacency matrix A = {aij} of a directed graph is the

boolean matrix that has

o 1 - if there is a directed edge from ith vertex to the jth vertex

o 0 - Otherwise

• Transitive Closure: Transitive closure of a directed graph with n vertices can be

defined as the n-by-n matrix T={tij}, in which the elements in the ith row (1≤ i ≤

n) and the jth column(1≤ j ≤ n) is 1 if there exists a nontrivial directed path (i.e., a

directed path of a positive length) from the ith vertex to the jth vertex, otherwise

tij is 0. The transitive closure provides reach ability information about a digraph.

Computing Transitive Closure:

• We can perform DFS/BFS starting at each vertex

• Performs traversal starting at the ith vertex.

• Gives information about the vertices reachable from the ith vertex

• Drawback: This method traverses the same graph several times.

• Efficiency : (O(n(n+m))

• Alternatively, we can use dynamic programming: the Warshall‘s Algorithm

Underlying idea of Warshall’s algorithm:

Dept of CSE,SJBIT 45

Analysis and Design of Algorithm 10CS43

• Let A denote the initial boolean matrix.

• The element r(k) [i, j] in ith row and jth column of matrix Rk (k = 0, 1, …, n) is

equal to 1 if and only if there exists a directed path from ith vertex to jth vertex

with intermediate vertex if any, numbered not higher than k

• Recursive Definition:

• Case 1: A path from vi to vj restricted to using only vertices from

{v1,v2,…,vk} as intermediate vertices does not use vk, Then

R(k) [i, j] = R(k-1) [i, j].

• Case 2: A path from vi to vj restricted to using only vertices from

{v1,v2,…,vk} as intermediate vertices do use vk. Then

R(k) [i, j] = R(k-1) [i, k] AND R(k-1) [k, j].

R(k)[i, j] = R(k-1) [i, j] OR (R(k-1) [i, k] AND R(k-1) [k, j])

Algorithm:
Algorithm Warshall(A[1..n, 1..n])

// Computes transitive closure matrix

// Input: Adjacency matrix A

// Output: Transitive closure matrix R

R(0) A

for k→1 to n do

for i→ 1 to n do

for j→ 1 to n do

R(k)[i, j]→ R(k-1)[i, j] OR (R(k-1)[i, k] AND R(k-1)[k, j])

return R(n)

Find Transitive closure for the given digraph using Warshall‘s algorithm.

C

D

A B C D

0 0 1 0

1 0 0 1

0 0 0 0

0 1 0 0

Dept of CSE,SJBIT 46

A

B

Solution:

R(0) = A

B

C

D

Analysis and Design of Algorithm 10CS43

A B C D A B C D

A 0 0 1 0 A 0 0 1 0

B 1 0 0 1 B 1 0 1 1

C 0 0 0 0 C 0 0 0 0

D 0 1 0 0 D 0 1 0 0

R1[2,3]

= R0[2,3] OR

R0[2,1] AND R0[1,3]

= 0 OR (1 AND 1)

= 1

A B C D A B C D

A 0 0 1 0 A 0 0 1 0

B 1 0 1 1 B 1 0 1 1

C 0 0 0 0 C 0 0 0 0

D 0 1 0 0 D 1 1 1 1

R2[4,1]

= R1[4,1] OR

R1[4,2] AND R1[2,1]

= 0 OR (1 AND 1)

= 1

R2[4,3]

= R1[4,3] OR

R1[4,2] AND R1[2,3]

= 0 OR (1 AND 1)

= 1

R2[4,4]

= R1[4,4] OR

R1[4,2] AND R1[2,4]

= 0 OR (1 AND 1)

= 1

A B C D A B C D

A 0 0 1 0 A 0 0 1 0

B 1 0 1 1 B 1 0 1 1

C 0 0 0 0 C 0 0 0 0

D 1 1 1 1 D 1 1 1 1

NO CHANGE

Dept of CSE,SJBIT 47

R(0) k = 1

Vertex 1

can be

intermediate

node

R(1) k = 2

Vertex

{1,2 } can

be

intermediate

nodes

R(2) k = 3

Vertex

{1,2,3 } can

be

intermediate

nodes

Analysis and Design of Algorithm 10CS43

A B C D A B C D

A 0 0 1 0 A 0 0 1 0

B 1 0 1 1 B 1 1 1 1

C 0 0 0 0 C 0 0 0 0

D 1 1 1 1 D 1 1 1 1

R4[2,2]

= R3[2,2] OR

R3[2,4] AND R3[4,2]

= 0 OR (1 AND 1)

= 1

A B C D

A 0 0 1 0

B 1 1 1 1

C 0 0 0 0

D 1 1 1 1

Efficiency:
• Time efficiency is Θ(n3)

• Space efficiency: Requires extra space for separate matrices for recording

intermediate results of the algorithm.

4.3Floyd’s Algorithm to find -ALL PAIRS SHORTEST PATHS

Some useful definitions:

• Weighted Graph: Each edge has a weight (associated numerical value). Edge

weights may represent costs, distance/lengths, capacities, etc. depending on the

problem.

• Weight matrix: W(i,j) is

o 0 if i=j

o ∞ if no edge b/n i and j.

o ―weight of edge‖ if edge b/n i and j.

Problem statement:
Given a weighted graph G(V, Ew), the all-pairs shortest paths problem is to find the

shortest path between every pair of vertices (vi, vj) Є V.

Solution:

A number of algorithms are known for solving All pairs shortest path problem

• Matrix multiplication based algorithm

• Dijkstra's algorithm

• Bellman-Ford algorithm

• Floyd's algorithm

Dept of CSE,SJBIT 48

R(3) k = 4

Vertex

{1,2,3,4 }

can be

intermediate

nodes

R(4)

TRANSITIVE CLOSURE

for the given graph

Analysis and Design of Algorithm 10CS43

Underlying idea of Floyd’s algorithm:

• Let W denote the initial weight matrix.

• Let D(k) [i, j] denote cost of shortest path from i to j whose intermediate vertices

are a subset of {1,2,…,k}.

• Recursive Definition

Case 1:

A shortest path from vi to vj restricted to using only vertices from {v1,v2,…,vk}

as intermediate vertices does not use vk. Then

D(k) [i, j] = D(k-1) [i, j].

Case 2:

A shortest path from vi to vj restricted to using only vertices from {v1,v2,…,vk}

as intermediate vertices do use vk. Then

D(k) [i, j] = D(k-1) [i, k] + D(k-1) [k, j].

We conclude:

D(k)[i, j] = min { D(k-1) [i, j], D(k-1) [i, k] + D(k-1) [k, j] }

Algorithm:
Algorithm Floyd(W[1..n, 1..n])

// Implements Floyd‘s algorithm

// Input: Weight matrix W

// Output: Distance matrix of shortest paths‘ length

D W

for k → 1 to n do

for i→ 1 to n do

for j→ 1 to n do

D [i, j]→ min { D [i, j], D [i, k] + D [k, j]

return D

Example:
Find All pairs shortest paths for the given weighted connected graph using Floyd‘s

algorithm.

A

4

B

Solution:

D(0) =

A

B

C

Dept of CSE,SJBIT

2

5

C

3

A B C

0 2 5

4 0 ∞

∞ 3 0

49

Analysis and Design of Algorithm 10CS43

A B C A B C

A 0 2 5 A 0 2 5

B 4 0 ∞ B 4 0 9

C ∞ 3 0 C ∞ 3 0

D1[2,3]

= min { D0 [2,3],

D0 [2,1] + D0 [1,3] }

= min { ∞, (4 + 5) }

= 9

A B C A B C

A 0 2 5 A 0 2 5

B 4 0 9 B 4 0 9

C ∞ 3 0 C 7 3 0

D2[3,1]

= min { D1 [3,1],

D1 [3,2] + D1 [2,1] }

= min { ∞, (4 + 3) }

= 7

A B C A B C

A 0 2 5 A 0 2 5

B 4 0 9 B 4 0 9

C 7 3 0 C 7 3 0

NO Change

ALL PAIRS SHORTEST

PATHS for the given

graph

50

D(0) k = 1

Vertex 1

can be

intermediate

node

D(1) k = 2

Vertex 1,2

can be

intermediate

nodes

D(2) k = 3

Vertex 1,2,3

can be

intermediate

nodes

D(3)

A B C

A 0 2 5

B 4 0 9

C 7 3 0

Dept of CSE,SJBIT

Analysis and Design of Algorithm 10CS43

4.4 0/1 Knapsack Problem Memory function

Definition:
Given a set of n items of known weights w1,…,wn and values v1,…,vn and a knapsack

of capacity W, the problem is to find the most valuable subset of the items that fit into the

knapsack.

Knapsack problem is an OPTIMIZATION PROBLEM

Dynamic programming approach to solve knapsack problem

Step 1:

Identify the smaller sub-problems. If items are labeled 1..n, then a sub-problem would be

to find an optimal solution for Sk = {items labeled 1, 2, .. k}

Step 2:

Recursively define the value of an optimal solution in terms of solutions to smaller

problems.

Initial conditions:

V[0, j] = 0 for j ≥ 0

V[i, 0] = 0 for i ≥ 0

Recursive step:

max { V[i-1, j], vi +V[i-1, j - wi] }

V[i, j] = if j - wi ≥ 0

V[i-1, j] if j - wi < 0

Step 3:

Bottom up computation using iteration

Question:

Apply bottom-up dynamic programming algorithm to the following instance of the

knapsack problem Capacity W= 5

Item # Weight (Kg) Value (Rs.)

1 2 3

2 3 4

3 4 5

4 5 6

Solution:

Using dynamic programming approach, we have:

Dept of CSE,SJBIT 51

Analysis and Design of Algorithm 10CS43

Calculation

Initial conditions:

V[0, j] = 0 for j ≥ 0

V[i, 0] = 0 for i ≥ 0

W1 = 2,

Available knapsack capacity = 1

W1 > WA, CASE 1 holds:

V[i, j] = V[i-1, j]

V[1,1] = V[0, 1] = 0

W1 = 2,

Available knapsack capacity = 2

W1 = WA, CASE 2 holds:

V[i, j] = max { V[i-1, j],

vi +V[i-1, j - wi] }

V[1,2] = max { V[0, 2],

3 +V[0, 0] }

= max { 0, 3 + 0 } = 3

W1 = 2,

Available knapsack capacity =

3,4,5

W1 < WA, CASE 2 holds:

V[i, j] = max { V[i-1, j],

vi +V[i-1, j - wi] }

V[1,3] = max { V[0, 3],

3 +V[0, 1] }

= max { 0, 3 + 0 } = 3

W2 = 3,

Available knapsack capacity = 1

W2 >WA, CASE 1 holds:

V[i, j] = V[i-1, j]

V[2,1] = V[1, 1] = 0

Dept of CSE,SJBIT 52

Table

2

0

2

0

2

0

3

2

0

3

2

0

3

Step

1

2

3

4

5

1

0

1

0

0

1

0

0

1

0

0

1

0

0

0

3 4 5

0 0 0

3 4 5

0 0 0

3 4 5

0 0 0

3 4 5

0 0 0

3 3 3

3 4 5

0 0 0

3 3 3

j=0

0

0

0

0

0

j=0

0

0

0

0

0

j=0

0

0

0

0

0

j=0

0

0

0

0

0

j=0

0

0

0

0

0

V[i,j]

i=0

1

2

3

4

V[i,j]

i=0

1

2

3

4

V[i,j]

i=0

1

2

3

4

V[i,j]

i=0

1

2

3

4

V[i,j]

i=0

1

2

3

4

Analysis and Design of Algorithm 10CS43

6 W2 = 3,

Available knapsack capacity = 2

W2 >WA, CASE 1 holds:

V[i, j] = V[i-1, j]

V[2,2] = V[1, 2] = 3

7 W2 = 3,

Available knapsack capacity = 3

W2 = WA, CASE 2 holds:

V[i, j] = max { V[i-1, j],

vi +V[i-1, j - wi] }

V[2,3] = max { V[1, 3],

4 +V[1, 0] }

= max { 3, 4 + 0 } = 4

8 W2 = 3,

Available knapsack capacity = 4

W2 < WA, CASE 2 holds:

V[i, j] = max { V[i-1, j],

vi +V[i-1, j - wi] }

V[2,4] = max { V[1, 4],

4 +V[1, 1] }

= max { 3, 4 + 0 } = 4

9 W2 = 3,

Available knapsack capacity = 5

W2 < WA, CASE 2 holds:

V[i, j] = max { V[i-1, j],

vi +V[i-1, j - wi] }

V[2,5] = max { V[1, 5],

4 +V[1, 2] }

= max { 3, 4 + 3 } = 7

10 W3 = 4,

Available knapsack capacity =

1,2,3

W3 > WA, CASE 1 holds:

V[i, j] = V[i-1, j]

Dept of CSE,SJBIT

5

0

3

5

0

3

5

0

3

5

0

3

7

5

0

3

7

53

j=0

0

0

0

0

0

j=0

0

0

0

0

0

j=0

0

0

0

0

0

j=0

0

0

0

0

0

j=0

0

0

0

0

0

V[i,j]

i=0

1

2

3

4

V[i,j]

i=0

1

2

3

4

V[i,j]

i=0

1

2

3

4

V[i,j]

i=0

1

2

3

4

V[i,j]

i=0

1

2

3

4

4

0

3

4

0

3

4

0

3

4

4

3

0

3

3

0

3

4

3

0

3

4

3

1

0

0

0

1

0

0

0

1

0

0

0

1

0

0

0

1

0

0

0

0

2

0

3

3

2

0

3

3

2

0

3

3

2

0

3

3

2

0

3

3

3

0 0

3 3

4 4

3 4

0 0

3 3

4 4

4

Analysis and Design of Algorithm 10CS43

11 W3 = 4,

Available knapsack capacity = 4

W3 = WA, CASE 2 holds:

V[i, j] = max { V[i-1, j],

vi +V[i-1, j - wi] }

V[3,4] = max { V[2, 4],

5 +V[2, 0] }

= max { 4, 5 + 0 } = 5

12 W3 = 4,

Available knapsack capacity = 5

W3 < WA, CASE 2 holds:

V[i, j] = max { V[i-1, j],

vi +V[i-1, j - wi] }

V[3,5] = max { V[2, 5],

5 +V[2, 1] }

= max { 7, 5 + 0 } = 7

13 W4 = 5,

Available knapsack capacity =

1,2,3,4

W4 < WA, CASE 1 holds:

V[i, j] = V[i-1, j]

14 W4 = 5,

Available knapsack capacity = 5

W4 = WA, CASE 2 holds:

V[i, j] = max { V[i-1, j],

vi +V[i-1, j - wi] }

V[4,5] = max { V[3, 5],

6 +V[3, 0] }

= max { 7, 6 + 0 } = 7

Maximal value is V [4, 5] = 7/-

What is the composition of the optimal subset?

The composition of the optimal subset if found by tracing back the computations

for the entries in the table.

Dept of CSE,SJBIT 54

3

0

3

4

4

3

V[i,j]

i=0

1

2

3

4

V[i,j]

i=0

1

2

3

4

V[i,j]

i=0

1

2

3

4

V[i,j]

i=0

1

2

3

4

j=0 1 2

0 0 0

0 0 3

0 0 3

0 0 3

0

j=0 1 2

0 0 0

0 0 3

0 0 3

0 0 3

0

j=0 1 2

0 0 0

0 0 3

0 0 3

0 0 3

0 0 3

j=0 1 2

0 0 0

0 0 3

0 0 3

0 0 3

0 0 3

5

0

3

7

5

0

3

7

7

5

0

3

7

7

5

0

3

7

7

7

4

0

3

4

5

4

0 0

3 3

4 4

4 5

3 4

0 0

3 3

4 4

4 5

4 5

3 4

0 0

3 3

4 4

4 5

4 5

Analysis and Design of Algorithm 10CS43

Remarks

V[4, 5] = V[3, 5]

ITEM 4 NOT included in the

subset

V[3, 5] = V[2, 5]

ITEM 3 NOT included in the

subset

V[2, 5] ≠ V[1, 5]

ITEM 2 included in the subset

Since item 2 is included in the knapsack:

Weight of item 2 is 3kg, therefore,

remaining capacity of the knapsack is

(5 - 3 =) 2kg V[1, 2] ≠ V[0, 2]

ITEM 1 included in the subset

Optimal subset: { item 1, item 2 }

Total weight is: 5kg (2kg + 3kg)

Total profit is: 7/- (3/- + 4/-)

55

Table

1 2 3 4

0 0 0 0

0 3 3 3

0 3 4 4

0 3 4 5

0 3 4 5

1 2 3 4

0 0 0 0

0 3 3 3

0 3 4 4

0 3 4 5

0 3 4 5

1 2 3 4

0 0 0 0

0 3 3 3

0 3 4 4

0 3 4 5

0 3 4 5

Step

1

V[i,j]

i=0

1

2

3

4

2

V[i,j]

i=0

1

2

3

4

3

V[i,j]

i=0

1

2

3

4

j=0

0

0

0

0

0

j=0

0

0

0

0

0

j=0

0

0

0

0

0

5

0

3

7

7

7

5

0

3

7

7

7

5

0

3

7

7

7

4

5

V[i,j]

i=0

1

2

3

4

5

0

3

7

7

7

j=0 1 2 3 4

0 0 0 0 0

0 0 3 3 3

0 0 3 4 4

0 0 3 4 5

0 0 3 4 5

Since item 1 is included in the knapsack:

Weight of item 1 is 2kg, therefore,

remaining capacity of the knapsack is

(2 - 2 =) 0 kg.

Dept of CSE,SJBIT

Analysis and Design of Algorithm 10CS43

Efficiency:

• Running time of Knapsack problem using dynamic programming algorithm is:

O(n * W)

• Time needed to find the composition of an optimal solution is: O(n + W)

Memory function

• Memory function combines the strength of top-down and bottom-up approaches

• It solves ONLY sub-problems that are necessary and does it ONLY ONCE.

The method:
• Uses top-down manner.

• Maintains table as in bottom-up approach.

• Initially, all the table entries are initialized with special ―null‖ symbol to indicate

that they have not yet been calculated.

• Whenever a new value needs to be calculated, the method checks the

corresponding entry in the table first:

• If entry is NOT ―null‖, it is simply retrieved from the table.

• Otherwise, it is computed by the recursive call whose result is then recorded in

the table.

Algorithm:

Algorithm MFKnap(i, j)

if V[i, j] < 0

if j < Weights[i]

value → MFKnap(i-1, j)

else

value → max {MFKnap(i-1, j),

Values[i] + MFKnap(i-1, j - Weights[i])}

V[i, j]→ value

return V[i, j]

Example:
Apply memory function method to the following instance of the knapsack problem

Capacity W= 5

Item # Weight (Kg) Value (Rs.)

1 2 3

2 3 4

3 4 5

4 5 6

Solution:

Using memory function approach, we have:

Dept of CSE,SJBIT 56

Analysis and Design of Algorithm 10CS43

Remarks

1 2 3 4 5

0 0 0 0 0

-1 -1 -1 -1 -1

-1 -1 -1 -1 -1

-1 -1 -1 -1 -1

-1 -1 -1 -1 -1

1 2 3 4 5

0 0 0 0 0

-1 -1 -1 -1 3

-1 -1 -1 -1 -1

-1 -1 -1 -1 -1

-1 -1 -1 -1 -1

V[1, 2] = 3

MFKnap(3, 5) 6 + MFKnap(3, 0)

1 2 3 4 5

0 0 0 0 0

-1 3 -1 -1 3

-1 -1 -1 -1 -1

-1 -1 -1 -1 -1

-1 -1 -1 -1 -1
MFKnap(0, 2) 3 + MFKnap(0, 0)

0 3 + 0

MFKnap(4, 5)

V[2, 5] = 7

1 2 3 4 5

0 0 0 0 0

-1 3 -1 -1 3

-1 -1 -1 -1 7

-1 -1 -1 -1 -1

-1 -1 -1 -1 -1

57

Computation

Initially, all the table entries are initialized

with special ―null‖ symbol to indicate that

they have not yet been calculated. Here

null is indicated with -1 value.

MFKnap(4, 5)

1

2

3

4

V[i,j] j=0

i=0 0

1 0

2 0

3 0

4 0

V[1, 5] = 3

6 + MFKnap(3, 0)

5 + MFKnap(2, 1)

4 + MFKnap(1, 2)

MFKnap(3, 5)

MFKnap(2, 5)

MFKnap(1, 5)

V[i,j]

i=0

1

2

3

4

j=0

0

0

0

0

0
3

3 + MFKnap(0, 3)

3 + 0

MFKnap(4, 5)

0

MFKnap(0, 5)

0

j=0

0

0

0

0

0

V[i,j]

i=0

1

2

3

4

MFKnap(2, 5)

MFKnap(1, 5)

3

5 + MFKnap(2, 1)

4 + MFKnap(1, 2)

3
0

6 + MFKnap(3, 0)

5 + MFKnap(2, 1)

4 + MFKnap(1, 2)

3

MFKnap(3, 5)
j=0

0

0

0

0

0

V[i,j]

i=0

1

2

3

4

7

MFKnap(2, 5)

3

MFKnap(1, 5)

3

Dept of CSE,SJBIT

Analysis and Design of Algorithm 10CS43

5 MFKnap(4, 5)

V[2, 1] = 0

V[3, 5] = 7
5

1 2 3 4 5

0 0 0 0 0

0 3 -1 -1 3

0 -1 -1 -1 7

-1 -1 -1 -1 7

-1 -1 -1 -1 -1

6

MFKnap(4, 5)

1 2 3 4 5

0 0 0 0 0

0 3 -1 -1 3

0 -1 -1 -1 7

-1 -1 -1 -1 7

-1 -1 -1 -1 7

The composition of the optimal subset if

found by tracing back the computations

for the entries in the table as done with

the early knapsack problem

Conclusion:

Optimal subset: { item 1, item 2 }

Total weight is: 5kg (2kg + 3kg)

Total profit is: 7/- (3/- + 4/-)

Efficiency:
• Time efficiency same as bottom up algorithm: O(n * W) + O(n + W)

• Just a constant factor gain by using memory function

• Less space efficient than a space efficient version of a bottom-up algorithm

Dept of CSE,SJBIT 58

6 + MFKnap(3, 0) MFKnap(3, 5)

7

MFKnap(2, 5)

7

7

5 + MFKnap(2, 1)

0

MFKnap(1, 1)

0

MFKnap(0, 1)

0

V[i,j]

i=0

1

2

3

4

j=0

0

0

0

0

0

V[4, 5] = 7

6

6 + MFKnap(3, 0)

0

7

MFKnap(3, 5)

7

j=0

0

0

0

0

0

V[i,j]

i=0

1

2

3

4

Analysis and Design of Algorithm 10CS43

UNIT-5

DECREASE-AND-CONQUER APPROACHES, SPACE-TIMETRADEOFFS

5.1DECREASE-AND-CONQUER APPROACHES: INTRODUCTION

5.2 INSERTION SORT

5.3 DEPTH FIRST SEARCH AND BREADTH FIRST SEARCH

5.4TOPOLOGICAL SORTING

5.5SPACE-TIME TRADEOFFS: INTRODUCTION

5.6SORTING BY COUNTING

5.7 INPUT ENHANCEMENT IN STRING MATCHING.

5.1 INTRODUCTION:
Decrease & conquer is a general algorithm design strategy based on exploiting the

relationship between a solution to a given instance of a problem and a solution to a

smaller instance of the same problem. The exploitation can be either top-down

(recursive) or bottom-up (non-recursive).

The major variations of decrease and conquer are

1. Decrease by a constant :(usually by 1):

a. insertion sort

b. graph traversal algorithms (DFS and BFS)

c. topological sorting

d. algorithms for generating permutations, subsets

2. Decrease by a constant factor (usually by half)

a. binary search and bisection method

3. Variable size decrease

a. Euclid‘s algorithm

Decrease by a constant :(usually by 1):

Dept of CSE,SJBIT 59

Analysis and Design of Algorithm 10CS43

Decrease by a constant factor (usually by half)

5.2 INSERTION SORT

Description:
Insertion sort is an application of decrease & conquer technique. It is a comparison based

sort in which the sorted array is built on one entry at a time

Algorithm:

ALGORITHM Insertionsort(A [0 … n-1])

//sorts a given array by insertion sort

//i/p: Array A[0…n-1]

//o/p: sorted array A[0…n-1] in ascending order

for i 1 to n-1

V A[i]

j i-1

Dept of CSE,SJBIT 60

Analysis and Design of Algorithm 10CS43

while j ≥ 0 AND A[j] > V do

A[j+1] A[j]

j j – 1

A[j + 1] V

Analysis:

• Input size: Array size, n

• Basic operation: key comparison

• Best, worst, average case exists

Best case: when input is a sorted array in ascending order:

Worst case: when input is a sorted array in descending order:

• Let Cworst(n) be the number of key comparison in the worst case. Then

• Let Cbest(n) be the number of key comparison in the best case.

Then

Example:
Sort the following list of elements using insertion sort:

89, 45, 68, 90, 29, 34, 17

89 45 68 90 29 34 17

45 89 68 90 29 34 17

45 68 89 90 29 34 17

45 68 89 90 29 34 17

29 45 68 89 90 34 17

29 34 45 68 89 90 17

17 29 34 45 68 89 90

Advantages of insertion sort:
• Simple implementation. There are three variations

o Left to right scan

o Right to left scan

o Binary insertion sort

• Efficient on small list of elements, on almost sorted list

• Running time is linear in best case

• Is a stable algorithm

• Is a in-place algorithm

Dept of CSE,SJBIT 61

Analysis and Design of Algorithm 10CS43

5.3 DEPTH-FIRST SEARCH (DFS) AND BREADTH-FIRST SEARCH (BFS)

DFS and BFS are two graph traversing algorithms and follow decrease and conquer

approach – decrease by one variation to traverse the graph

Some useful definition:
• Tree edges: edges used by DFS traversal to reach previously unvisited vertices

• Back edges: edges connecting vertices to previously visited vertices other than

their immediate predecessor in the traversals

• Cross edges: edge that connects an unvisited vertex to vertex other than its

immediate predecessor. (connects siblings)

• DAG: Directed acyclic graph

Depth-first search (DFS)
Description:

• DFS starts visiting vertices of a graph at an arbitrary vertex by marking it as

visited.

• It visits graph‘s vertices by always moving away from last visited vertex to an

unvisited one, backtracks if no adjacent unvisited vertex is available.

• Is a recursive algorithm, it uses a stack

• A vertex is pushed onto the stack when it‘s reached for the first time

• A vertex is popped off the stack when it becomes a dead end, i.e., when there is

no adjacent unvisited vertex

• ―Redraws‖ graph in tree-like fashion (with tree edges and back edges for

undirected graph)

Algorithm:
ALGORITHM DFS (G)

//implements DFS traversal of a given graph

//i/p: Graph G = { V, E}

//o/p: DFS tree

Mark each vertex in V with 0 as a mark of being ―unvisited‖

count 0

for each vertex v in V do

if v is marked with 0

dfs(v)

dfs(v)

count count + 1

mark v with count

for each vertex w in V adjacent to v do

if w is marked with 0

dfs(w)

Dept of CSE,SJBIT 62

Analysis and Design of Algorithm 10CS43

Example:
Starting at vertex A traverse the following graph using DFS traversal method:

C D

G H

Remarks

Insert A into stack

A(1)

Insert B into stack

B (2)

A(1)

Insert F into stack

F (3)

B (2)

A(1)

Insert E into stack

E (4)

F (3)

B (2)

A(1)

Delete E from stack

E (4, 1)

F (3)

B (2)

A(1)

Dept of CSE,SJBIT 63

A

E

Solution:

Step

1

A

2

A

3

A B

F

4

B

F

Graph

B

B

F

A

E

5 NO unvisited adjacent vertex for E, backtrack

Analysis and Design of Algorithm 10CS43

NO unvisited adjacent vertex for F, backtrack Delete F from stack

E (4, 1)

F (3, 2)

B (2)

A(1)

Insert G into stack

A B

E (4, 1)

F (3, 2) G (5)

B (2)

A(1)

Insert C into stack

E (4, 1) C (6)

F (3, 2) G (5)

B (2)

A(1)

Insert D into stack

D (7)

E (4, 1) C (6)

F (3, 2) G (5)

B (2)

A(1)

Insert H into stack

H (8)

D (7)

E (4, 1) C (6)

F (3, 2) G (5)

B (2)

A(1)

11 NO unvisited adjacent vertex for H, backtrack

Delete H from stack

H (8, 3)

D (7)

E (4, 1) C (6)

F (3, 2) G (5)

B (2)

A(1)

Dept of CSE,SJBIT 64

6

7

8

G

C

G

C

G

C

G

F

B

F

B

F

B

F

E

A

E

9

A

E

10

A

E

D

D

H

Analysis and Design of Algorithm 10CS43

12 NO unvisited adjacent vertex for D, backtrack Delete D from stack

H (8, 3)

D (7, 4)

E (4, 1) C (6)

F (3, 2) G (5)

B (2)

A(1)

13 NO unvisited adjacent vertex for C, backtrack Delete C from stack

H (8, 3)

D (7, 4)

E (4, 1) C (6, 5)

F (3, 2) G (5)

B (2)

A(1)

14 NO unvisited adjacent vertex for G, backtrack Delete G from stack

H (8, 3)

D (7, 4)

E (4, 1) C (6, 5)

F (3, 2) G (5, 6)

B (2)

A(1)

15 NO unvisited adjacent vertex for B, backtrack Delete B from stack

H (8, 3)

D (7, 4)

E (4, 1) C (6, 5)

F (3, 2) G (5, 6)

B (2, 7)

A(1)

16 NO unvisited adjacent vertex for A, backtrack Delete A from stack

H (8, 3)

D (7, 4)

E (4, 1) C (6, 5)

F (3, 2) G (5, 6)

B (2, 7)

A(1, 8)

Stack becomes empty. Algorithm stops as all the

nodes in the given graph are visited

The DFS tree is as follows: (dotted lines are back edges)

Dept of CSE,SJBIT 65

Analysis and Design of Algorithm 10CS43

A

B

F G

E C

D

H

Applications of DFS:
• The two orderings are advantageous for various applications like topological

sorting, etc

• To check connectivity of a graph (number of times stack becomes empty tells the

number of components in the graph)

• To check if a graph is acyclic. (no back edges indicates no cycle)

• To find articulation point in a graph

Efficiency:
• Depends on the graph representation:

o Adjacency matrix : Θ(n2)

o Adjacency list: Θ(n + e)

Breadth-first search (BFS)
Description:

• BFS starts visiting vertices of a graph at an arbitrary vertex by marking it as
visited.

• It visits graph‘s vertices by across to all the neighbors of the last visited vertex

• Instead of a stack, BFS uses a queue

• Similar to level-by-level tree traversal

• ―Redraws‖ graph in tree-like fashion (with tree edges and cross edges for

undirected graph)

Algorithm:
ALGORITHM BFS (G)

//implements BFS traversal of a given graph

//i/p: Graph G = { V, E}

//o/p: BFS tree/forest

Mark each vertex in V with 0 as a mark of being ―unvisited‖

Dept of CSE,SJBIT 66

Analysis and Design of Algorithm 10CS43

count 0

for each vertex v in V do

if v is marked with 0

bfs(v)

bfs(v)

count count + 1

mark v with count and initialize a queue with v

while the queue is NOT empty do

for each vertex w in V adjacent to front‘s vertex v do

if w is marked with 0

count count + 1

mark w with count

add w to the queue

remove vertex v from the front of the queue

Example:
Starting at vertex A traverse the following graph using BFS traversal method:

C D

G H

Remarks

Insert A into queue

A(1)

Insert B, E into queue

A(1), B (2), E(3)

B (2), E(3)

Insert F, G into queue

B(2), E(3), F(3), G(4)

E(3), F(3), G(4)

67

A

E

Solution:

Step

1

A

2

A

E

3

A

E

Dept of CSE,SJBIT

B

F

Graph

B

G

B

F

Analysis and Design of Algorithm

NO unvisited adjacent vertex for E, backtrack

F(3), G(4)

NO unvisited adjacent vertex for F, backtrack Delete F from queue

G(4)

Insert C, H into queue

G(4), C(5), H(6)

C(5), H(6)

Insert D into queue

C(5), H(6), D(7)

H(6), D(7)

NO unvisited adjacent vertex for H, backtrack Delete H from queue

D(7)

NO unvisited adjacent vertex for D, backtrack Delete D from queue

Queue becomes empty. Algorithm stops as all the

nodes in the given graph are visited

The BFS tree is as follows: (dotted lines are cross edges)

A

B

F

C

D

Dept of CSE,SJBIT

4

5

6

7

8

9

H

D

H

B

F

B

F

A

E

A

E

C

G

C

G

7

E

G

H

68

10CS43

Delete E from queue

Analysis and Design of Algorithm 10CS43

Applications of BFS:
• To check connectivity of a graph (number of times queue becomes empty tells the

number of components in the graph)

• To check if a graph is acyclic. (no cross edges indicates no cycle)

• To find minimum edge path in a graph

Efficiency:
• Depends on the graph representation:

o Array : Θ(n2)

o List: Θ(n + e)

Difference between DFS & BFS:

DFS BFS

Data structure Stack Queue

No. of vertex orderings 2 orderings 1 ordering

Edge types Tree edge Tree edge

Back edge Cross edge

Applications Connectivity Connectivity

Acyclicity Acyclicity

Articulation points Minimum edge paths

Efficiency for Θ(n2) Θ(n2)

adjacency matrix

Efficiency for Θ(n + e) Θ(n + e)

adjacency lists

5.4 Topological Sorting

Description:
Topological sorting is a sorting method to list the vertices of the graph in such an order

that for every edge in the graph, the vertex where the edge starts is listed before the

vertex where the edge ends.

NOTE: There is no solution for topological sorting if there is a cycle in the digraph .

[MUST be a DAG]

Topological sorting problem can be solved by using

1. DFS method

2. Source removal method

DFS Method:
• Perform DFS traversal and note the order in which vertices become dead ends

(popped order)

• Reverse the order, yield the topological sorting.

Example:

Dept of CSE,SJBIT 69

Analysis and Design of Algorithm 10CS43

Apply DFS – based algorithm to solve the topological sorting problem for the given

graph:

C4
C1

C3

Remarks

Insert C1 into stack

C1(1)

Insert C2 into stack

C2 (2)

C1(1)

Insert C4 into stack

C4 (3)

C2 (2)

C1(1)

Insert C5 into stack

C5 (4)

C4 (3)

C2 (2)

C1(1)

Delete C5 from stack

C5 (4, 1)

C4 (3)

C2 (2)

C1(1)

Delete C4 from stack

C5 (4, 1)

C4 (3, 2)

C2 (2)

C1(1)

70

C2 C5

Graph Step

1

2

3

4

5

6

C1

C1

C1

C1

C3

C4

C3

C4

C3

C5

NO unvisited adjacent vertex for C5, backtrack

NO unvisited adjacent vertex for C4, backtrack

Dept of CSE,SJBIT

Analysis and Design of Algorithm 10CS43

7 NO unvisited adjacent vertex for C3, backtrack Delete C3 from stack

C5 (4, 1)

C4 (3,2)

C2 (2, 3)

C1(1)

8 NO unvisited adjacent vertex for C1, backtrack Delete C1 from stack

C5 (4, 1)

C4 (3,2)

C2 (2, 3)

C1(1, 4)

Stack becomes empty, but there is a node which is unvisited, therefore start the DFS

again from arbitrarily selecting a unvisited node as source

9 Insert C2 into stack

C2
C5 (4, 1)

C4 (3,2)

C2 (2, 3)

C1(1, 4) C2(5)

10 NO unvisited adjacent vertex for C2, backtrack Delete C2 from stack

C5 (4, 1)

C4 (3,2)

C2 (2, 3)

C1(1, 4) C2(5, 5)

Stack becomes empty, NO unvisited node left, therefore algorithm stops.

The popping – off order is:

C5, C4, C3, C1, C2,

Topologically sorted list (reverse of pop order):

C2, C1 C3 C4 C5

Source removal method:
• Purely based on decrease & conquer

• Repeatedly identify in a remaining digraph a source, which is a vertex with no

incoming edges

• Delete it along with all the edges outgoing from it.

Example:
Apply Source removal – based algorithm to solve the topological sorting problem for the

given graph:

C1

C3

C2

Dept of CSE,SJBIT

C4

C5

71

Analysis and Design of Algorithm 10CS43

Solution:

C4

C3

C 5

Delete C2

C3

Delete C4

C5

The topological order is C1, C2, C3, C4, C5

Dept of CSE,SJBIT 72

C4

C5

Delete C1

C3

C2

C4

C5

C1

C2

C4

C5

Delete C5

Analysis and Design of Algorithm 10CS43

5.5 SPACE-TIME TRADEOFFS:

Introduction

Two varieties of space-for-time algorithms:

• input enhancement — preprocess the input (or its part) to store some info

to be used later in solving the problem

• counting sorts

• string searching algorithms

• pre structuring — preprocess the input to make accessing its elements

easier 1)hashing 2)indexing schemes (e.g., B-trees)

5.6 SORTING BY COUNTING

Assume elements to be sorted belong to a known set of

potential duplication

Constraint: we cannot overwrite the original

frequency of each

element and later accumulate sum of frequencies

Algorithm:

for j ← 0 to u-l do D[j] ← 0 // init frequencies

for i ← 0 to n-1 do D[A[i]-l] ← D[A[i] - l] + 1 // compute frequencies

for j ← 1 to u-l do D[j] ← D[j-1] + D[j] // reuse for distribution

for i ← n-1 downto 0 do

j ← A[i] - l

S[D[j] - 1] ← A[i]

D[j] ← D[j] - 1

return S

Dept of CSE, SJBIT 73

small values between l and u, with

list Distribution Counting:

(distribution)

compute the

Analysis and Design of Algorithm 10CS43

5.7 INPUT ENHANCEMENT IN STRING MATCHING.

Horspool’s Algorithm

A simplified version of Boyer-Moore algorithm: preprocesses pattern to

generate a shift table that determines how much to shift the patter when a

mismatch occurs. Always makes a shift based on the text‘s character c aligned

with the last compared (mismatched) character in the pattern according to the shift

table‘s entry for c

void horspoolInitocc()

{

int j;

char a;

for (a=0; a<alphabetsize; a++)

occ[a]=-1;

for (j=0; j<m-1; j++)

{

a=p[j];

occ[a]=j;

Dept of CSE, SJBIT 74

Analysis and Design of Algorithm 10CS43

}

}

void horspoolSearch()

{

int i=0, j;

while (i<=n-m)

{

j=m-1;

while (j>=0 && p[j]==t[i+j]) j--;

if (j<0) report(i);

i+=m-1;

i-=occ[t[i]];

}

}

Dept of CSE, SJBIT 75

Analysis and Design of Algorithm 10CS43

Time complexity

• preprocessing phase in O(m+ п) time and O(п) space complexity.

• searching phase in O(mn) time complexity.

• the average number of comparisons for one text character is between 1/п and 2/(п+1).

(п is the number of storing characters)

Dept of CSE, SJBIT 76

Analysis and Design of Algorithm 10CS43

UNIT 6

LIMITATIONS OF ALGORITHMIC POWER AND COPING WITH THEM

6.1LOWER-BOUND ARGUMENTS

6.2DECISION TREES

6.3 P, NP, AND NP-COMPLETE PROBLEMS

Objectives

We now move into the third and final major theme for this course.

1. Tools for analyzing algorithms.

2. Design strategies for designing algorithms.

3. Identifying and coping with the limitations of algorithms.

Efficiency of an algorithm

• By establishing the asymptotic efficiency class

• The efficiency class for selection sort (quadratic) is lower. Does this mean that

selection sort is a ―better‖ algorithm?

– Like comparing ―apples‖ to ―oranges‖

• By analyzing how efficient a particular algorithm is compared to other algorithms for

the same problem

– It is desirable to know the best possible efficiency any algorithm solving

This problem may have – establishing a lower bound

6.1 LOWER BOUNDS ARGUMENTS

Lower bound: an estimate on a minimum amount of work needed to solve a given problem

Examples:

• number of comparisons needed to find the largest element in a set of n numbers

• number of comparisons needed to sort an array of size n

• number of comparisons necessary for searching in a sorted array

• number of multiplications needed to multiply two n-by-n matrices

Lower bound can be

– an exact count

– an efficiency class (Ω)

• Tight lower bound: there exists an algorithm with the same efficiency as the lower

bound

Dept of CSE,SJBIT 77

Analysis and Design of Algorithm 10CS43

Problem Lower bound Tightness

sorting Ω(nlog n) yes

searching in a sorted array Ω(log n) yes

element uniqueness Ω(nlog n) yes

n-digit integer multiplication Ω(n) unknown

multiplication of n-by-n matrices Ω(n2) unknown

Methods for Establishing Lower Bounds

• Trivial lower bounds

• Information-theoretic arguments (decision trees)

• Adversary arguments

• Problem reduction

Trivial Lower Bounds

Trivial lower bounds: based on counting the number of items that must be processed in input

and generated as output

Examples

• finding max element

• polynomial evaluation

• sorting

• element uniqueness

• computing the product of two n-by-n matrices

Conclusions

• may and may not be useful

• be careful in deciding how many elements must be processed

6.2 DECISION TREES

Decision tree — a convenient model of algorithms involving Comparisons in which: (i)

internal nodes represent comparisons (ii) leaves represent outcomes

Decision tree for 3-element insertion sort

Dept of CSE,SJBIT 78

Analysis and Design of Algorithm 10CS43

Deriving a Lower Bound from Decision Trees

• How does such a tree help us find lower bounds?

– There must be at least one leaf for each correct output.

– The tree must be tall enough to have that many leaves.

• In a binary tree with l leaves and height h,

h ≥ log2 l

Decision Tree and Sorting Algorithms

Decision Tree and Sorting Algorithms

• Number of leaves (outcomes) ≥ n!

• Height of binary tree with n! leaves ≥ �log2n!�

• Minimum number of comparisons in the worst case ≥ �log2n!� for any comparison-based

sorting algorithm

• �log2n!� ≈ n log2n

• This lower bound is tight (e.g. mergesort)

Decision Tree and Searching a Sorted Array

Dept of CSE,SJBIT 79

Analysis and Design of Algorithm 10CS43

Decision Tree and Searching a Sorted Array

• Number of leaves (outcomes) = n + n+1 = 2n+1

• Height of ternary tree with 2n+1 leaves ≥ �log3 (2n+1)�

• This lower bound is NOT tight (the number of worst-case comparisons for binary search

is �log2 (n+1)�, and �log3 (2n+1)� ≤ �log2 (n+1)�)

• Can we find a better lower bound or find an algorithm with better efficiency than binary

search?

Decision Tree and Searching a Sorted Array

Decision Tree and Searching a Sorted Array

• Consider using a binary tree where internal nodes also serve as successful searches and

leaves only represent unsuccessful searches

• Number of leaves (outcomes) = n + 1

• Height of binary tree with n+1 leaves ≥ �log2 (n+1)�

• This lower bound is tight

Decision-tree example

Dept of CSE,SJBIT 80

Analysis and Design of Algorithm 10CS43

Decision-tree model

A decision tree can model the execution of any comparison sort:

• One tree for each input size n.

• View the algorithm as splitting whenever it compares two elements.

• The tree contains the comparisons along all possible instruction traces.

• The running time of the algorithm = the length of the path taken.

• Worst-case running time = height of tree.

Any comparison sort can be turned into a Decision tree

Dept of CSE,SJBIT 81

Analysis and Design of Algorithm 10CS43

Dept of CSE,SJBIT 82

Analysis and Design of Algorithm 10CS43

Decision Tree Model

• In the insertion sort example, the decision tree reveals all possible key comparison

sequences for 3 distinct numbers.

• There are exactly 3!=6 possible output sequences.

• Different comparison sorts should generate different decision trees.

• It should be clear that, in theory, we should be able to draw a decision tree for ANY

comparison sort algorithm.

• Given a particular input sequence, the path from root to the leaf path traces a particular

key comparison sequence performed by that comparison sort.

- The length of that path represented the number of key comparisons performed by

the sorting algorithm.

• When we come to a leaf, the sorting algorithm has determined the sorted order.

• Notice that a correct sorting algorithm should be able to sort EVERY possible output

sorted order.

• Since, there are n! possible sorted order, there are n! leaves in the decision tree.

• Given a decision tree, the height of the tree represent the longest length of a root to leaf

path.

• It follows the height of the decision tree represents the largest number of key

comparisons, which is the worst-case running time of the sorting algorithm.

―Any comparison based sorting algorithm takes Ω(n logn) to sort a list of n distinct

elements in the worst-case.‖

– any comparison sort ← model by a decision tree

– worst-case running time ← the height of decision tree

―Any comparison based sorting algorithm takes Ω(n logn) to sort a list of n distinct elements

in the worst-case.‖

• We want to find a lower bound (Ω) of the height of a binary tree that has n! Leaves.

◊ What is the minimum height of a binary tree that has n! leaves?

Dept of CSE,SJBIT 83

Analysis and Design of Algorithm 10CS43

• The binary tree must be a complete tree (recall the definition of complete tree).

• Hence the minimum (lower bound) height is θ(log2(n!)).

• log2(n!)

= log2(n) + log2(n-1) + …+ log2(n/2)+….

≥ n/2 log2(n/2) = n/2 log2(n) – n/2

So, log2(n!) = Ω(n logn).

• It follows the height of a binary tree which has n! leaves is at least Ω(n logn) ◊ worst-

case running time is at least Ω(n logn)

• Putting everything together, we have

―Any comparison based sorting algorithm takes Ω(n logn) to sort a list of n distinct

elements in the worst-case.‖

Adversary Arguments

Adversary argument: a method of proving a lower bound by playing role of adversary that makes

algorithm work the hardest by adjusting input

Example: ―Guessing‖ a number between 1 and n with yes/no questions

Adversary: Puts the number in a larger of the two subsets generated by last question

Lower Bounds by Problem Reduction

Idea: If problem P is at least as hard as problem Q, then a lower bound for Q is also a lower

bound for P.

Hence, find problem Q with a known lower bound that can be reduced to problem P in question.

Example: Euclidean MST problem

• Given a set of n points in the plane, construct a tree with minimum total length that

connects the given points. (considered as problem P)

• To get a lower bound for this problem, reduce the element uniqueness problem to it.

(considered as problem Q)

• If an algorithm faster than n log n exists for Euclidean MST, then one exists for element

uniqueness also. Aha! A contradiction! Therefore, any algorithm for Euclidean MST

must take Ω(n log n) time.

Classifying Problem Complexity

Is the problem tractable, i.e., is there a polynomial-time (O(p(n)) algorithm that solves it?

Possible answers:

• yes (give examples)

• no

–because it‘s been proved that no algorithm exists at all

(e.g., Turing‘s halting problem)

–because it‘s been proved that any algorithm for the problem takes exponential

time unknown

Dept of CSE,SJBIT 84

Analysis and Design of Algorithm 10CS43

Problem Types: Optimization and Decision

• Optimization problem: find a solution that maximizes or minimizes some objective

function

• Decision problem: answer yes/no to a question

Many problems have decision and optimization versions.

E.g.: traveling salesman problem

• optimization: find Hamiltonian cycle of minimum length

• decision: find Hamiltonian cycle of length ≤ m

Decision problems are more convenient for formal investigation of their complexity.

6.3 CLASS P

P: the class of decision problems that are solvable in O(p(n)) time, where p(n) is a polynomial of

problem‘s input size n

Examples:

• searching

• element uniqueness

• graph connectivity

• graph acyclicity

• primality testing (finally proved in 2002)

6.4 CLASS NP

NP (nondeterministic polynomial): class of decision problems whose proposed solutions can be

verified in polynomial time = solvable by a nondeterministic polynomial algorithm

A nondeterministic polynomial algorithm is an abstract two-stage procedure that:

• generates a random string purported to solve the problem

• checks whether this solution is correct in polynomial time

By definition, it solves the problem if it‘s capable of generating and verifying a solution on one

of its tries

Why this definition?

• led to development of the rich theory called ―computational complexity‖

Example: CNF satisfiability

Problem: Is a boolean expression in its conjunctive normal form (CNF) satisfiable, i.e., are there

values of its variables that makes it true?

This problem is in NP. Nondeterministic algorithm:

• Guess truth assignment

• Substitute the values into the CNF formula to see if it evaluates to true

Example: (A | ¬B | ¬C) & (A | B) & (¬B | ¬D | E) & (¬D | ¬E)

Truth assignments:

A B C D E

0 0 0 0 0

. . .

1 1 1 1 1

Checking phase: O(n)

Dept of CSE,SJBIT 85

Analysis and Design of Algorithm 10CS43

What problems are in NP?

• Hamiltonian circuit existence

• Partition problem: Is it possible to partition a set of n integers into two disjoint subsets

with the same sum?

• Decision versions of TSP, knapsack problem, graph coloring, and many other

combinatorial optimization problems. (Few exceptions include: MST, shortest paths)

• All the problems in P can also be solved in this manner (but no guessing is necessary), so

we have:

P � NP

• Big question: P = NP ?

P = NP ?

• One of the most important unsolved problems is computer science is whether or not

P=NP.

– If P=NP, then a ridiculous number of problems currently believed to be very

difficult will turn out have efficient algorithms.

– If P≠NP, then those problems definitely do not have polynomial time solutions.

• Most computer scientists suspect that P ≠ NP. These suspicions are based partly on the

idea of NP-completeness.

6.5 NP-COMPLETE PROBLEMS

A decision problem D is NP-complete if it‘s as hard as any problem in NP, i.e.,

• D is in NP

• every problem in NP is polynomial-time reducible to D

NP problems

NP -complete

problem

Other NP-complete problems obtained through polynomial-

time reductions from a known NP-complete problem

Dept of CSE,SJBIT 86

Analysis and Design of Algorithm 10CS43

NP problems

known

NP -complete

problem

candidate

for NP -

completeness

Examples: TSP, knapsack, partition, graph-coloring and hundreds of other problems of

combinatorial nature

General Definitions: P, NP, NP-hard, NP-easy, and NP-complete

• Problems

- Decision problems (yes/no)

- Optimization problems (solution with best score)

• P

- Decision problems (decision problems) that can be solved in polynomial time

- can be solved ―efficiently‖

• NP

- Decision problems whose ―YES‖ answer can be verified in polynomial

time, if we already have the proof (or witness)

• co-NP

- Decision problems whose ―NO‖ answer can be verified in polynomial time,

if we already have the proof (or witness)

• e.g. The satisfiability problem (SAT)

- Given a boolean formula

(x1 � x2 � x3 � x4)�(x5 � x6 � x7)� x8 � x9

is it possible to assign the input x1...x9, so that the formula evaluates to TRUE?

- If the answer is YES with a proof (i.e. an assignment of input value), then we can check the

proof in polynomial time (SAT is in NP)

- We may not be able to check the NO answer in polynomial time (Nobody really knows.)

• NP-hard

- A problem is NP-hard iff an polynomial-time algorithm for it implies a polynomial-

time algorithm for every problem in NP

- NP-hard problems are at least as hard as NP problems

• NP-complete

- A problem is NP-complete if it is NP-hard, and is an element of NP (NP-easy)

Dept of CSE,SJBIT 87

Analysis and Design of Algorithm 10CS43

• Relationship between decision problems and optimization problems

- every optimization problem has a corresponding decision problem

- optimization: minimize x, subject to constraints

- yes/no: is there a solution, such that x is less than c?

- an optimization problem is NP-hard (NP-complete)

if its corresponding decision problem is NP-hard (NP-complete)

• How to know another problem, A, is NP-complete?

- To prove that A is NP-complete, reduce a known NP-complete problem to A

• Requirement for Reduction

- Polynomial time

- YES to A also implies YES to SAT, while

NO to A also implies No to SAT

Examples of NP-complete problems

Vertex cover

• Vertex cover

- given a graph G=(V,E), find the smallest number of vertexes that cover each edge

- Decision problem: is the graph has a vertex cover of size K?

• Independent set

- independent set: a set of vertices in the graph with no edges between each pair of nodes.

- given a graph G=(V,E), find the largest independent set

- reduction from vertex cover:

• Set cover

- given a universal set U, and several subsets S1,...Sn

- find the least number of subsets that contains each elements in the universal set

Polynomial (P) Problems

• Are solvable in polynomial time

• Are solvable in O(nk), where k is some constant.

• Most of the algorithms we have covered are in P

Nondeterministic Polynomial (NP) Problems

• This class of problems has solutions that are verifiable in polynomial time.

– Thus any problem in P is also NP, since we would be able to solve it in

polynomial time, we can also verify it in polynomial time

Dept of CSE,SJBIT 88

Analysis and Design of Algorithm 10CS43

NP-Complete Problems

• Is an NP-Problem

• Is at least as difficult as an NP problem (is reducible to it)

• More formally, a decision problem C is NP-Complete if:

– C is in NP

– Any known NP-hard (or complete) problem ≤p C

– Thus a proof must show these two being satisfied

Exponential Time Algorithms

Examples

• Longest path problem: (similar to Shortest path problem, which requires polynomial

time) suspected to require exponential time, since there is no known polynomial

algorithm.

• Hamiltonian Cycle problem: Traverses all vertices exactly once and form a cycle.

Reduction

• P1 : is an unknown problem (easy/hard ?)

• P2 : is known to be difficult

If we can easily solve P2 using P1 as a subroutine then P1 is difficult

Must create the inputs for P1 in polynomial time.

* P1 is definitely difficult because you know you cannot solve P2 in polynomial time unless you

use a component that is also difficult (it cannot be the mapping since the mapping is known to be

polynomial)

Decision Problems

Represent problem as a decision with a boolean output

– Easier to solve when comparing to other problems

– Hence all problems are converted to decision problems.

P = {all decision problems that can be solved in polynomial time}

Dept of CSE,SJBIT 89

Analysis and Design of Algorithm 10CS43

NP = {all decision problems where a solution is proposed, can be verified in polynomial time}

NP-complete: the subset of NP which are the ―hardest problems‖

Alternative Representation

• Every element p in P1 can map to an element q in P2 such that p is true (decision

problem) if and only if q is also true.

• Must find a mapping for such true elements in P1 and P2, as well as for false elements.

• Ensure that mapping can be done in polynomial time.

• *Note: P1 is unknown, P2 is difficult

Cook’s Theorem

• Stephen Cook (Turing award winner) found the first NP-Complete problem, 3SAT.

Basically a problem from Logic.

Generally described using Boolean formula.

A Boolean formula involves AND, OR, NOT operators and some variables.

Ex: (x or y) and (x or z), where x, y, z are boolean variables.

Problem Definition – Given a boolean formula of m clauses, each containing ‗n‘

boolean variables, can you assign some values to these variables so that the

formula can be true?

Boolean formula: (x v y v ẑ) Λ (x v y v ẑ)

Try all sets of solutions. Thus we have exponential set of possible solutions. So it

is a NPC problem.

• Having one definite NP-Complete problem means others can also be proven NP-

Complete, using reduction.

Dept of CSE,SJBIT 90

Analysis and Design of Algorithm 10CS43

Unit 7

COPING WITH LIMITATIONS OF ALGORITHMIC POWER

7.1 Backtracking: n - Queens problem,

7.2 Hamiltonian Circuit Problem,

7.3 Subset –Sum Problem.

7.4 Branch-and-Bound: Assignment Problem,

7.5 Knapsack Problem,

7.6 Traveling Salesperson Problem.

7.7 Approximation Algorithms for NP-Hard Problems – Traveling Salesperson Problem,

Knapsack Problem

Introduction
Tackling Difficult Combinatorial Problems

• There are two principal approaches to tackling difficult combinatorial problems (NP-hard

problems):

• Use a strategy that guarantees solving the problem exactly but doesn‘t guarantee to find a

solution in polynomial time

• Use an approximation algorithm that can find an approximate (sub-optimal) solution in

polynomial time

Exact Solution Strategies

• exhaustive search (brute force)

– useful only for small instances

• dynamic programming

– applicable to some problems (e.g., the knapsack problem)

• backtracking

– eliminates some unnecessary cases from consideration

– yields solutions in reasonable time for many instances but worst case is still

exponential

• branch-and-bound

– further refines the backtracking idea for optimization problems

7.1 Backtracking

• Suppose you have to make a series of decisions, among various choices, where

– You don‘t have enough information to know what to choose

– Each decision leads to a new set of choices

– Some sequence of choices (possibly more than one) may be a solution to your

problem

• Backtracking is a methodical way of trying out various sequences of decisions, until you

find one that ―works‖

Dept of CSE,SJBIT 91

Analysis and Design of Algorithm 10CS43

Backtracking : A Scenario

A tree is composed of nodes

Backtracking can be thought of as searching a tree for a particular ―goal‖ leaf node

• Each non-leaf node in a tree is a parent of one or more other nodes (its children)

• Each node in the tree, other than the root, has exactly one parent

The backtracking algorithm

• Backtracking is really quite simple--we ―explore‖ each node, as follows:

• To ―explore‖ node N:

1. If N is a goal node, return ―success‖

2. If N is a leaf node, return ―failure‖

3. For each child C of N,

3.1. Explore C

3.1.1. If C was successful, return ―success‖

4. Return ―failure‖

• Construct the state-space tree

– nodes: partial solutions

– edges: choices in extending partial solutions

• Explore the state space tree using depth-first search

• ―Prune‖ nonpromising nodes

– dfs stops exploring subtrees rooted at nodes that cannot lead to a solution and

backtracks to such a node‘s parent to continue the search

Example:

n-Queens Problem

Place n queens on an n-by-n chess board so that no two of them are in the same row, column, or

diagonal

Dept of CSE,SJBIT 92

Analysis and Design of Algorithm 10CS43

State-Space Tree of the 4-Queens Problem

7.1.1N-Queens Problem:

• The object is to place queens on a chess board in such as way as no queen can capture

another one in a single move

– Recall that a queen can move horz, vert, or diagonally an infinite distance

• This implies that no two queens can be on the same row, col, or diagonal

– We usually want to know how many different placements there are

4-Queens

• Lets take a look at the simple problem of placing queens 4 queens on a 4x4 board

• The brute-force solution is to place the first queen, then the second, third, and forth

– After all are placed we determine if they are placed legally

• There are 16 spots for the first queen, 15 for the second, etc.

– Leading to 16*15*14*13 = 43,680 different combinations

• Obviously this isn‘t a good way to solve the problem

• First lets use the fact that no two queens can be in the same col to help us

– That means we get to place a queen in each col

Dept of CSE,SJBIT 93

Analysis and Design of Algorithm 10CS43

• So we can place the first queen into the first col, the second into the second, etc.

• This cuts down on the amount of work

– Now there are 4 spots for the first queen, 4 spots for the second, etc.

• 4*4*4*4 = 256 different combinations

• However, we can still do better because as we place each queen we can look at the

previous queens we have placed to make sure our new queen is not in the same row or

diagonal as a previously place queen

• Then we could use a Greedy-like strategy to select the next valid position for each col

• So now what do we do?

• Well, this is very much like solving a maze

– As you walk though the maze you have to make a series of choices

– If one of your choices leads to a dead end, you need to back up to the last choice

you made and take a different route

• That is, you need to change one of your earlier selections

– Eventually you will find your way out of the maze

• This type of problem is often viewed as a state-space tree

Dept of CSE,SJBIT 94

Analysis and Design of Algorithm 10CS43

– A tree of all the states that the problem can be in

• We start with an empty board state at the root and try to work our way down to a

leaf node

– Leaf nodes are completed boar

Eight Queen Problem

• The solution is a vector of length 8 (a(1), a(2), a(3),, a(8)).

a(i) corresponds to the column where we should place the i-th queen.

• The solution is to build a partial solution element by element until it is complete.

• We should backtrack in case we reach to a partial solution of length k, that we couldn't

expand any more.

Eight Queen Problem: Algorithm

putQueen(row) {

for every position col on the same row

if position col is available

place the next queen in position col

if (row<8)

putQueen(row+1);

else success;

remove the queen from position col

}

putQueen(row) {

for every position col on the same row

if position col is available

place the next queen in position col

if (row<8)

putQueen(row+1);

else success;

remove the queen from position col

}

Dept of CSE,SJBIT 95

Analysis and Design of Algorithm 10CS43

Eight Queen Problem: Implementation

• Define an 8 by 8 array of 1s and 0s to represent the chessboard

• The array is initialized to 1s, and when a queen is put in a position (c,r), board[r][c] is set

to zero

• Note that the search space is very huge: 16,772, 216 possibilities.

• Is there a way to reduce search space? Yes Search Pruning.

• We know that for queens:

each row will have exactly one queen

each column will have exactly one queen

each diagonal will have at most one queen

• This will help us to model the chessboard not as a 2-D array, but as a set of rows,

columns and diagonals.

7.2 HAMILTONIAN CYCLE

• Hamiltonian Cycle: a cycle that contains every node exactly once

• Problem:Given a graph, does it have a Hamiltonian cycle?

Background

• NP-complete problem:

– Most difficult problems in NP (non- deterministic polynomial time)

• A decision problem D is NP-complete if it is complete for NP, meaning that:

– it is in NP

– it is NP-hard (every other problem in NP is reducible to it.)

• As they grow large, we are not able to solve them in a reasonable time (polynomial time)

Alternative Definition

• . NP Problem such as Hamiltonian Cycle :

– Cannot be solved in Poly-time

– Given a solution, easy to verify in poly-time

a b

f

e

3

with 5

8

w/o 6

8

with 7 w/o 7

14+7>15

15

solution

Dept of CSE,SJBIT

c

d

with 6

14

X

0

with 3

w/o 5

3

w/o 3

0
with 5

w/o 6

3

X
3+7<15

w/o 5

0

X
0+13<15

96

5

with 6

11

X

11+7>14

with 6

9

X

9+7>15

w/o 6

5

X
5+7<15

8

X
8<15

Analysis and Design of Algorithm 10CS43

7.3 SUBSET –SUM PROBLEM.

• Problem: Given n positive integers w1, ... wn and a positive integer S. Find all subsets

of w1, ... wn that sum to S.

• Example:

n=3, S=6, and w1=2, w2=4, w3=6

• Solutions:

{2,4} and {6}

• We will assume a binary state space tree.

• The nodes at depth 1 are for including (yes, no) item 1, the nodes at depth 2 are for

item 2, etc.

• The left branch includes wi, and the right branch excludes wi.

• The nodes contain the sum of the weights included so far

Sum of subset Problem: State SpaceTree for 3 items

A Depth First Search solution

• Problems can be solved using depth first search of the (implicit) state space tree.

• Each node will save its depth and its (possibly partial) current solution

• DFS can check whether node v is a leaf.

– If it is a leaf then check if the current solution satisfies the constraints

– Code can be added to find the optimal solution

A DFS solution

• Such a DFS algorithm will be very slow.

• It does not check for every solution state (node) whether a solution has been reached, or

whether a partial solution can lead to a feasible solution

• Is there a more efficient solution?

Backtracking solution to Sum of Subsets

• Definition: We call a node nonpromising if it cannot lead to a feasible (or optimal)

Dept of CSE,SJBIT 97

Analysis and Design of Algorithm 10CS43

solution, otherwise it is promising

• Main idea: Backtracking consists of doing a DFS of the state space tree, checking

whether each node is promising and if the node is nonpromising backtracking to the

node‘s parent

• The state space tree consisting of expanded nodes only is called the pruned state space

tree

• The following slide shows the pruned state space tree for the sum of subsets example

• There are only 15 nodes in the pruned state space tree

• The full state space tree has 31 nodes

Backtracking algorithm

void checknode (node v) {

node u

if (promising (v))

if (aSolutionAt(v))

write the solution

else //expand the node

for (each child u of v)

checknode (u)

Checknode

• Checknode uses the functions:

– promising(v) which checks that the partial solution represented by v can lead to

the required solution

– aSolutionAt(v) which checks whether the partial solution represented by node v

solves the problem.

Dept of CSE,SJBIT 98

Analysis and Design of Algorithm 10CS43

Sum of subsets – when is a node “promising”?

• Consider a node at depth i

• weightSoFar = weight of node, i.e., sum of numbers included in partial solution node

represents

• totalPossibleLeft = weight of the remaining items i+1 to n (for a node at depth i)

• A node at depth i is non-promising

if (weightSoFar + totalPossibleLeft < S)

or (weightSoFar + w[i+1] > S)

• To be able to use this ―promising function‖ the wi must be sorted in non-decreasing order

sumOfSubsets (i, weightSoFar, totalPossibleLeft)

1) if (promising (i)) //may lead to solution

2) then if (weightSoFar == S)

3) then print include[1] to include[i] //found solution

4) else //expand the node when weightSoFar < S

5) include [i + 1] = "yes‖ //try including

6) sumOfSubsets (i + 1,

weightSoFar + w[i + 1],

totalPossibleLeft - w[i + 1])

7) include [i + 1] = "no‖ //try excluding

8) sumOfSubsets (i + 1, weightSoFar ,

totalPossibleLeft - w[i + 1])

boolean promising (i)

1) return (weightSoFar + totalPossibleLeft ≥ S) &&

(weightSoFar == S || weightSoFar + w[i + 1] ≤ S)

Prints all solutions!

Initial call sum Of Subsets (0, 0,)

Dept of CSE,SJBIT

n

∑
i = 1

w
i

99

Analysis and Design of Algorithm 10CS43

7.4 Branch and Bound Searching Strategies

Feasible Solution vs. Optimal Solution

• DFS, BFS, hill climbing and best-first search can be used to solve some searching

problem for searching a feasible solution.

• However, they cannot be used to solve the optimization problems for searching an (the)

optimal solution.

The Branch-and-bound strategy

• This strategy can be used to solve optimization problems without an exhaustive search in

the average case.

• 2 mechanisms:

– A mechanism to generate branches when searching the solution space

– A mechanism to generate a bound so that many braches can be terminated

• It is efficient in the average case because many branches can be terminated very early.

• Although it is usually very efficient, a very large tree may be generated in the worst case.

• Many NP-hard problem can be solved by B&B efficiently in the average case; however,

the worst case time complexity is still exponential.

Bounding

• A bound on a node is a guarantee that any solution obtained from expanding the node

will be:

– Greater than some number (lower bound)

– Or less than some number (upper bound)

• If we are looking for a minimal optimal, as we are in weighted graph coloring, then we

need a lower bound

– For example, if the best solution we have found so far has a cost of 12 and the

lower bound on a node is 15 then there is no point in expanding the node

• The node cannot lead to anything better than a 15

• We can compute a lower bound for weighted graph color in the following way:

– The actual cost of getting to the node

– Plus a bound on the future cost

• Min weight color * number of nodes still to color

– That is, the future cost cannot be any better than this

• Recall that we could either perform a depth-first or a breadth-first search

– Without bounding, it didn‘t matter which one we used because we had to expand

the entire tree to find the optimal solution

– Does it matter with bounding?

• Hint: think about when you can prune via bounding

• We prune (via bounding) when:

(currentBestSolutionCost <= nodeBound)

• This tells us that we get more pruning if:

– The currentBestSolution is low

– And the nodeBound is high

• So we want to find a low solution quickly and we want the highest possible lower bound

Dept of CSE,SJBIT 100

Analysis and Design of Algorithm 10CS43

– One has to factor in the extra computation cost of computing higher lower bounds

vs. the expected pruning savings

The Assignment Problem

• In many business situations, management needs to assign - personnel to jobs, - jobs to

machines, - machines to job locations, or - salespersons to territories.

• Consider the situation of assigning n jobs to n machines.

• When a job i (=1,2,....,n) is assigned to machine j (=1,2,n) that incurs a cost Cij.

• The objective is to assign the jobs to machines at the least possible total cost.

• This situation is a special case of the Transportation Model And it is known as the

assignment problem.

• Here, jobs represent ―sources‖ and machines represent ―destinations.‖

• The supply available at each source is 1 unit And demand at each destination is 1 unit.

The assignment model can be expressed mathematically as follows:

Xij= 0, if the job j is not assigned to machine i

1, if the job j is assigned to machine i

Dept of CSE,SJBIT 101

Analysis and Design of Algorithm 10CS43

The Assignment Problem Example

• Ballston Electronics manufactures small electrical devices.

• Products are manufactured on five different assembly lines (1,2,3,4,5).

• When manufacturing is finished, products are transported from the assembly lines to one

of the five different inspection areas (A,B,C,D,E).

• Transporting products from five assembly lines to five inspection areas requires different

times (in minutes)

Under current arrangement, assignment of inspection areas to the assembly lines are 1 to A, 2

to B, 3 to C, 4 to D, and 5 to E. This arrangement requires 10+7+12+17+19 = 65 man

minutes.

• Management would like to determine whether some other assignment of production

lines to inspection areas may result in less cost.

• This is a typical assignment problem. n = 5 And each assembly line is assigned to

each inspection area.

• It would be easy to solve such a problem when n is 5, but when n is large all possible

alternative solutions are n!, this becomes a hard problem.

• Assignment problem can be either formulated as a linear programming model, or it

can be formulated as a transportation model.

• However, An algorithm known as Hungarian Method has proven to be a quick and

efficient way to solve such problems.

Assignment Problem Revisited:

Select one element in each row of the cost matrix C so that:

• no two selected elements are in the same column

• the sum is minimized

Example

Lower bound: Any solution to this problem will have total cost

at least: 2 + 3 + 1 + 4 (or 5 + 2 + 1 + 4)

Dept of CSE,SJBIT 102

Analysis and Design of Algorithm
10CS43

Example: First two levels of the state-space tree

Dept of CSE,SJBIT 103

Analysis and Design of Algorithm 10CS43

Example: Complete state-space tree

7.5 TRAVELING SALESPERSON PROBLEM

• This is a classic CS problem

• Given a graph (cities), and weights on the edges (distances) find a minimum weight tour

of the cities

– Start in a particular city

– Visit all other cities (exactly once each)

– Return to the starting city

• Cannot be done by brute-force as this is worst-case exponential or worse running time

– So we will look to backtracking with pruning to make it run in a reasonable

amount of time in most cases

• We will build our state space by:

– Having our children be all the potential cities we can go to next

– Having the depth of the tree be equal to the number of cities in the graph

• we need to visit each city exactly once

• So given a fully connected set of 5 nodes we have the following state space

– only partially completed

Dept of CSE,SJBIT 104

Analysis and Design of Algorithm 10CS43

• Now we need to add bounding to this problem

– It is a minimization problem so we need to find a lower bound

• We can use:

– The current cost of getting to the node plus

– An underestimate of the future cost of going through the rest of the cities

• The obvious choice is to find the minimum weight edge in the graph and

multiply that edge weight by the number of remaining nodes to travel

through

• As an example assume we have the given adjacency matrix

• If we started at node A and have just traveled to node B then we need to compute the

bound for node B

– Cost 14 to get from A to B

– Minimum weight in matrix is 2 times 4 more legs to go to get back to node A = 8

– For a grand total of 14 + 8 = 22

0 14 4 10 20

14 0 7 8 7

4 5 0 7 16

11 7 9 0 2

18 7 17 4 0

Recall that if we can make the lower bound higher then we will get more pruning

• Note that in order to complete the tour we need to leave node B, C, D, and E

– The min edge we can take leaving B is min(14, 7, 8, 7) = 7

– Similarly, C=4, D=2, E=4

Dept of CSE,SJBIT 105

Analysis and Design of Algorithm 10CS43

This implies that at best the future underestimate can be 7+4+2+4=17

• 17 + current cost of 14 = 31

– This is much higher than 8 + 14 = 22

0 14 4 10 20

14 0 7 8 7

4 5 0 7 16

11 7 9 0 2

18 7 17 4 0

Example: Traveling Salesman Problem

7.6 THE 0/1 KNAPSACK PROBLEM

Dept of CSE,SJBIT 106

Analysis and Design of Algorithm 10CS43

How to find the upper bound?

• Ans: by quickly finding a feasible solution in a greedy manner: starting from the smallest

available i, scanning towards the largest i‘s until M is exceeded. The upper bound can be

calculated.

The 0/1 knapsack problem

• E.g. n = 6, M = 34

i 1 2 3 4 5 6

Pi 6 10 4 5 6 4

Wi 10 19 8 10 12 8

(Pi/Wi ≥ Pi+1/Wi+1)

• A feasible solution: X1 = 1, X2 = 1, X3 = 0, X4 = 0, X5 = 0, X6 = 0

-(P1+P2) = -16 (upper bound)

Any solution higher than -16 can not be an optimal solution.

How to find the lower bound?
• Ans: by relaxing our restriction from Xi = 0 or 1 to 0 ≤ Xi ≤ 1 (knapsack problem)

n

i = 1

solution for 0/1 knapsack
n

i = 1

optimal solution for fractional

knapsack problem. Let
n

Y= - P i X
i = 1

� Y
‘
 ≤ Y

7.7 APPROXIMATION APPROACH

Apply a fast (i.e., a polynomial-time) approximation algorithm to get a solution that is not

necessarily optimal but hopefully close to it

Accuracy measures:

accuracy ratio of an approximate solution sa

r(sa) = f(sa) / f(s*) for minimization problems

r(sa) = f(s*) / f(sa) for maximization problems

where f(sa) and f(s*) are values of the objective function f for the approximate solution sa and

Dept of CSE,SJBIT 107

P i X ∑ Let - be an optimal i

P i X ∑ ′ i problem and - be an

n

∑
i = 1

′ . , Y
‘
 = - ∑ i P i X i

Analysis and Design of Algorithm 10CS43

actual optimal solution s*

performance ratio of the algorithm A the lowest upper bound of r(sa) on all instances

Nearest-Neighbor Algorithm for TSP

Starting at some city, always go to the nearest unvisited city, and, after visiting all the cities,

return to the starting one

Note: Nearest-neighbor tour may depend on the starting city

Accuracy: RA = ∞ (unbounded above) – make the length of AD

arbitrarily large in the above example

Multifragment-Heuristic Algorithm

Stage 1: Sort the edges in nondecreasing order of weights. Initialize the set of tour edges to be

constructed to empty set

Stage 2: Add next edge on the sorted list to the tour, skipping those whose addition would‘ve

created a vertex of degree 3 or a cycle of length less than n. Repeat this step until a tour of

length n is obtained

Note: RA = ∞, but this algorithm tends to produce better tours than the nearest-neighbor

algorithm

Twice-Around-the-Tree Algorithm

Stage 1: Construct a minimum spanning tree of the graph(e.g., by Prim‘s or Kruskal‘s algorithm)

Stage 2: Starting at an arbitrary vertex, create a path that goes twice around the tree and returns

to the same vertex

Stage 3: Create a tour from the circuit constructed in Stage 2 by making shortcuts to avoid

visiting intermediate vertices more than once

Note: RA = ∞ for general instances, but this algorithm tends to produce better tours than the

nearest-neighbor algorithm

Christofides Algorithm

Stage 1: Construct a minimum spanning tree of the graph

Stage 2: Add edges of a minimum-weight matching of all the odd vertices in the minimum

spanning tree

Stage 3: Find an Eulerian circuit of the multigraph obtained in Stage 2

Stage 3: Create a tour from the path constructed in Stage 2 by making shortcuts to avoid visiting

intermediate vertices more than once

Dept of CSE,SJBIT 108

Analysis and Design of Algorithm 10CS43

RA = ∞ for general instances, but it tends to produce better tours than the twice-around-the-

minimum-tree alg.

Euclidean Instances

Theorem If P ≠ NP, there exists no approximation algorithm for TSP with a finite performance

ratio.

Definition An instance of TSP is called Euclidean, if its distances satisfy two conditions:

1. symmetry d[i, j] = d[j, i] for any pair of cities i and j

2. triangle inequality d[i, j] ≤ d[i, k] + d[k, j] for any cities i, j, k

For Euclidean instances:

approx. tour length / optimal tour length ≤ 0.5(log2 n + 1) for nearest neighbor and

multifragment heuristic;

approx. tour length / optimal tour length ≤ 2 for twice-around-the-tree;

approx. tour length / optimal tour length ≤ 1.5 for Christofides

Local Search Heuristics for TSP

Start with some initial tour (e.g., nearest neighbor). On each iteration, explore the current tour‘s

neighborhood by exchanging a few edges in it. If the new tour is shorter, make it the current

tour; otherwise consider another edge change. If no change yields a shorter tour, the current tour

is returned as the output.

Greedy Algorithm for Knapsack Problem

Step 1: Order the items in decreasing order of relative values:

v1/w1≥… ≥ vn/wn

Step 2: Select the items in this order skipping those that don‘t fit into the knapsack

Example: The knapsack‘s capacity is 16

item weight value v/w

1 2 $40 20

2 5 $30 6

3 10 $50 5

4 5 $10 2

Accuracy

• RA is unbounded (e.g., n = 2, C = m, w1=1, v1=2, w2=m, v2=m)

• yields exact solutions for the continuous version

Approximation Scheme for Knapsack Problem

Step 1: Order the items in decreasing order of relative values:

v1/w1≥… ≥ vn/wn

Step 2: For a given integer parameter k, 0 ≤ k ≤ n, generate all subsets of k items or less and for

each of those that fit the knapsack, add the remaining items in decreasing order

of their value to weight ratios

Step 3: Find the most valuable subset among the subsets generated in Step 2 and return it as the

Dept of CSE,SJBIT 109

Analysis and Design of Algorithm 10CS43

algorithm‘s output

Bin Packing Problem: First-Fit Algorithm

First-Fit (FF) Algorithm: Consider the items in the order given and place each item in the first

available bin with enough room for it; if there are no such bins, start a new one

Example: n = 4, s1 = 0.4, s2 = 0.2, s3 = 0.6, s4 = 0.7

Accuracy

• Number of extra bins never exceeds optimal by more than 70% (i.e., RA ≤ 1.7)

• Empirical average-case behavior is much better. (In one experiment with 128,000 bins,

the relative error was found to be no more than 2%.)

Bin Packing: First-Fit Decreasing Algorithm

First-Fit Decreasing (FFD) Algorithm: Sort the items in decreasing order (i.e., from the largest

to the smallest). Then proceed as above by placing an item in the first bin in which it fits and

starting a new bin if there are no such bins

Example: n = 4, s1 = 0.4, s2 = 0.2, s3 = 0.6, s4 = 0.7

Accuracy

• Number of extra bins never exceeds optimal by more than 50% (i.e., RA ≤ 1.5)

• Empirical average-case behavior is much better, too

Dept of CSE,SJBIT 110

Analysis and Design of Algorithm 10CS43

UNIT-8

PRAM ALGORITHMS

8.1 Introduction,

8.2 Computational Model,

8.3 Parallel Algorithms for Prefix Computation,

8.4 List Ranking, and Graph Problems,

8.1 INTRODUCTION

In this section a few basic facts about parallel processing in general. One very basic fact that

applies to parallel computation, regardless of how it is implemented, is the following:

Suppose the fastest sequential algorithm for doing a computation with parameter n has execution

time of T(n). Then the fastest parallel algorithm with m processors (each comparable to that of

the sequential computer) has execution time ¸ T(n)/m. The idea here is: If you could find a faster

parallel algorithm, you could execute it sequentially by having a sequential computer simulate

parallelism and get a faster sequential algorithm. This would contradict the fact that the given

sequential algorithm is the fastest possible. We are making the assumption that the cost of

simulating parallel algorithms by sequential ones is negligible. This claim is called the ―Principle

of Unitary Speedup‖. As usual, the parameter n represents the relative size of the instance of the

problem being considered. For instance, if the problem was that of sorting, n might be the

number of items to be sorted and T(n) would be O(n lg n) for a sorting algorithm based upon

comparisons.

As simple as this claim is, it is a bit controversial. It makes the tacit assumption that the

algorithm in question is deterministic. In other words, the algorithm is like the usual idea of a

computer program — it performs calculations and makes decisions based on the results of these

calculations.

There is an interesting area of the theory of algorithms in which statement is not necessarily true

— this is the theory of randomized algorithms. Here, a solution to a problem may involve

making random ―guesses‖ at some stage of the calculation. In this case, the parallel algorithm

using m processors can run faster than m× the speed of the sequential algorithm (―Super-unitary

speedup‖). This phenomenon occurs in certain problems in which random search is used, and

Dept of CSE, SJBIT 111

Analysis and Design of Algorithm 10CS43

most guesses at a solution quickly lead to a valid solution, but there are a few guesses that

execute for a long time without producing any concrete results.

The expected execution-time of a single (sequential) attempt to find a solution is the

average of all of these times, or 10.99 time-units.

8.2. MODELS OF PARALLEL COMPUTATION

If we attack this problem with a parallel computer that has 2 processors that try distinct

possibilities, the expected time (and even the worst-case time) is 1 unit, since at least one of

these two distinct possibilities will be a fast solution, consequently, see a super-unitary speedup

in the parallel algorithm. In other words the expected1 running-time of the algorithm is divided

by > 10, which is much greater than the ratio of processors.

The opponents of the concept of super-unitary speedups (including the author) would

argue that the original sequential algorithm was not optimal — and that the optimal sequential

algorithm would have attempted two possible solutions with two distinct processes, run

concurrently). A sequential algorithm that created two processes would have a running time of 2

units. The speedup that results by going to the sample parallel algorithm is 2, which is exactly

equal to the ratio of processors. Thus, by modifying the sequential algorithm used, the validity is

restored.

In this section, consider some simple algorithms that can be implemented when a SIMD

computer in which every processor can access common RAM. In general, a computer in which

many processors can access common RAM in a single program-step is called the PRAM model

of computer. This is one of the oldest models of parallel processing to be considered, although

there have never been any large parallel computers that implement it. The PRAM model is a kind

of mathematical idealization of a parallel computer that eliminates many of the low-level details

and allows a researcher to concentrate on the ―purely parallel‖ aspects of a problem.

Traditionally, the PRAM model of computation has been regarded as more of theoretical

than practical interest. This is due to the fact that it requires large numbers of processors to be

physically connected to the same memory location. The two examples cited above (the Sequent

and the Encore Multimax) aren‘t an exception to this statement: they only have small numbers of

processors. Several researchers are exploring the possibility of physically realizing of PRAM

computers using optical interfaces.

Dept of CSE, SJBIT 112

Analysis and Design of Algorithm 10CS43

There exist several different models of program control. Flynn listed several basic

schemes:

SIMD: Single Instruction Multiple Data. In this model the processors are controlled by a

program whose instructions are applied to all of them simultaneously (with certain

qualifications). Assume that each of the processors has a unique number that is ―known‖ to the

processor in the sense that instructions to the parallel computer can refer to processor numbers.

An example of this type of machine is: 1Recall that the expected running-time of an algorithm

like the one in the example is the average of actual running times, weighted by probabilities that

these running times occur.

MIMD: Multiple Instruction Multiple Data. In this model processors can each have independent

programs that are read from the common RAM. This model is widely used in several settings:

The data-movement and communications problems that occur in all parallel computation are

more significant here because the instructions to the processors as well as the data must be

passed between the common memory and the processors. Due to these data-movement problems,

commercial MIMD computers tend to have a relatively small number of processors (¼ 20). In

general, it is easier to program a MIMD machine if one is only interested in a very limited form

of parallelism—namely the formation of processes. Conventional operating systems like UNIX

form separate processes to carry out many functions, and these processes really execute in

parallel on commercially-available MIMD machines. It follows that, with one of these MIMD

machines, one can reap some of the benefits of parallelism without explicitly doing any parallel

programming. For this reason, most of the parallel computers in commercial use today tend to be

MIMD machines, run as general-purpose computers. On the surface, it would appear that MIMD

machine are strictly more powerful than SIMD machines with the same number of processors.

Interestingly enough, this is not the case—it turns out that SIMD machines are more suited to

performing computations with a very regular structure. MIMD machines are not as suited to

solving such problems because their processors must be precisely synchronized to implement

certain algorithms. Pure MIMD machines have no hardware features to guarantee

synchronization of processors. In general, it is not enough to simply load multiple copies of a

program into all of the processors and to start all of these copies at the same time. In fact many

such computers have hardware features that tend to destroy synchronization, once it

Dept of CSE, SJBIT 113

Analysis and Design of Algorithm 10CS43

has been achieved. For instance, the manner in which memory is accessed in the Sequent

Symmetry series, generally causes processes to run at different rates even if they are

synchronized at some time. Many Sequent‘s even have processors that run at different clock-

rates.

8.2.1 MODELS OF PARALLEL COMPUTATION

Three other terms that fill out this list are:

SISD Single Instruction, Single Data. This is nothing but conventional sequential computing.

MISD This case is often compared to computation that uses Systolic Arrays. These are arrays of

processors that are developed to solve specific problems — usually on a single VLSI chip. A

clock coordinates the data movement operations of all of the processors, and output from some

processors are pipelined into other processors. The term ―Systolic‖ comes from an analogy with

an animal‘s circulatory system — the data in the systolic array playing the part of the blood in

the circulatory system. In a manner of speaking, one can think of the different processors in a

systolic array as constituting ―multiple processors‖ that work on one set of

(pipelined) data.

SIMD-MIMD Hybrids This is a new category of parallel computer that is becoming very

significant. These machines are also called SAMD machines (Synchronous-Asynchronous

Multiple Data). The first announced commercial SAMD computer is the new Connection

Machine, the CM-5.

This is essentially a MIMD computer with hardware features to allow:

• Precise synchronization of processes to be easily achieved.

• Synchronization of processors to be maintained with little or no overhead,

Once it has been achieved (assuming that the processors are all executing the same

instructions in corresponding program steps). It differs from pure MIMD machines in that the

hardware maintains a uniform ―heartbeat‖ throughout the machine, so that when the same

program is run on all processors, and all copies of this program are started at the same time, it is

possible to the execution of all copies to be kept in lock-step with essentially no overhead. Such

computers allow efficient execution of MIMD and SIMD programs.

Dept of CSE, SJBIT 114

Analysis and Design of Algorithm 10CS43

8.3 PARALLEL ALGORITHMS FOR PREFIX COMPUTATION

PRAM Recursive Prefix Sum Algorithm

Input: Array of (x1, x2, …, xn) elements, n = 2k

Output: Prefix sums si, 1 < i < n

begin

if n = 1 then s1 = x1; exit

for 1 < i < n/2 pardo

yi := x2i–1 + x2i

Recursively compute prefix sums of y and store in z

for 1 < i < n pardo

if i is even then si := zi/2

if i > 1 is odd then si := z(i–1)/2 + xi

if i = 1 then s1 := x1

Theorem: An algorithm that runs in T time on the p-processor priority CRCW PRAM can be

simulated by EREW PRAM to run in O(T log

p) time. A concurrent read or write of an p-processor CRCW PRAM can be implemented on a p

processor EREW PRAM to execute in O(log p) time

Q1,…,Qp CRCW processors, such that Qi has to read (write) M[ji]

P1,…,Pp EREW processors

M1,…,Mp denote shared memory locations for special use Pi stores <ji,i> in Mi

Sort pairs in lexicographically non-decreasing order in O(log p) time using EREW merge sort

algorithm

Pick representative from each block of pairs that have same firs component in O(1) time

Representative Pi reads (writes) from M[k] with <k,_> in Mi and copies data to each M in the

block in O(log p) time using EREW segmented parallel prefix algorithm

Pi reads data from Mi

For n x n matrix M with non-negative integer coefficients, define M and give an algorithm for

computing m. prove that M cnan be computed from n x n matrix M in O(log n)time using

CRCW PRAM processors for any fixed € > 0

Consider n×n matrix multiplication C = A B using n3 processors.

Each element of C

cij = Σk=1..n aik bkj

can be computed on the CREW PRAM in parallel using n processors in O(log n) time All cij can

be computed using n3 processors in O(log n)

Matrix multiply with n3 processors (i,j,l)

Each processor (i,j,l) executes:

Input: n×n matrices A and B, n = 2k

Output: C = A B

begin

C‟[i,j,l] := A[i,l]B[l,j]

for h = 1 to log n do

Dept of CSE, SJBIT 115

Analysis and Design of Algorithm 10CS43

if i < n/2h then

C‟[i,j,l] := C‟[i,j,2l–1] + C‟[i,j,2l]

if l = 1 then

C[i,j] := C‟[i,j,1]

End

8.4 LIST RANKING AND GRAPH PROBLEMS.

Convex Hull Problem
The planar convex hull of a set of points S ={p1, p2, …, pn} of pi = (x,y) coordinates is the

smallest convex polygon that encompasses all points S on the x-y plane

Preprocess the points by sorting in O(log n) parallel time

(pipelined merge sort), such that x(p1) < x(p2) < … < x(pn)

Remove duplicates x(pi) = x(pj) (for UCH and LCH)

Divide-and-conquer:

1. Split S into S1 S2 and recursively compute the UCH of S1 and S2

2. Combine UCH(S1) and UCH(S2) by computing the upper common tangent in O(1)
time to form UCH(S) Repeat to compute the LCH

Parallel time (assuming p = O(n) processors)

T(n) = T(n/2) + O(1) gives

T(n) = O(log n)

Dept of CSE, SJBIT 116

