
Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 1 
 

SYLLABUS 

PART - A 

 

UNIT – 1  

8086 PROCESSORS: Historical background, The microprocessor-based personal computer 

system, 8086 CPU Architecture, Machine language instructions, Instruction execution timing. 

        (6Hours) 

UNIT – 2 

INSTRUCTION SET OF 8086: Assembler instruction format, data transfer and arithmetic, 

branch type, loop, NOP & HALT, flag manipulation, logical and shift and rotate instructions. 

Illustration of these instructions with example programs, Directives and operators         (6 Hours) 

 

UNIT – 3  

BYTE AND STRING MANIPULATION: String instructions, REP Prefix, Table translation, 

Number format conversions, Procedures, Macros, Programming using keyboard and video 

display                  (7 Hours) 

 

UNIT – 4  

8086 INTERRUPTS: 8086 Interrupts and interrupt responses, Hardware interrupt applications, 

Software interrupt applications, Interrupt examples             (7 Hours) 

 

PART - B 

UNIT – 5  

8086 INTERFACING: Interfacing microprocessor to keyboard (keyboard types, keyboard 

circuit connections and interfacing, software keyboard interfacing, keyboard interfacing with 

hardware), Interfacing to alphanumeric displays (interfacing LED displays to microcomputer), 

Interfacing a microcomputer to a stepper motor.            (7 Hours) 

 

UNIT - 6  

8086 BASED MULTIPROCESSING SYSTEMS: Coprocessor configurations, The 8087 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 2 
 

numeric data processor: data types, processor architecture, instruction set and examples   

       (6 Hours) 

UNIT - 7 

SYSTEM BUS STRUCTURE: Basic 8086 configurations: minimum mode, maximum mode, 

Bus Interface: peripheral component interconnect (PCI) bus, the parallel printer interface (LPT), 

the universal serial bus (USB)               (6 Hours) 

 

UNIT – 8  

80386, 80486 AND PENTIUM PROCESSORS: Introduction to the 80386 microprocessor, 

Special 80386 registers, Introduction to the 80486 microprocessor, Introduction to the Pentium 

microprocessor.                 (7 Hours) 

 

 

TEXT BOOKS: 

1. Microcomputer systems-The 8086 / 8088 Family – Y.C. Liu and G. A. Gibson, 2E PHI - 

2003 

2. The Intel Microprocessor, Architecture, Programming and Interfacing-Barry B. Brey, 6e, 

Pearson Education / PHI, 2003 

REFERENCE BOOKS: 

 

1. Microprocessor and Interfacing- Programming & Hardware, Douglas hall, 2e TMH, 1991  

2. Advanced Microprocessors and Peripherals - A.K. Ray and K.M. Bhurchandi, TMH, 

2001  

3. 8088 and 8086 Microprocessors - Programming, Interfacing, Software, Hardware & 

Applications - Triebel and Avtar Singh, 4e, Pearson Education, 2003  

 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 3 
 

TABLE OF CONTENT 

SL.NO TOPIC 
PAGE 

NO. 

PART – A   

UNIT 1: 8086 PROCESSORS: 

1 Historical background 6-10 

2 The microprocessor-based personal computer system 10-29 

3 8086 CPU Architecture 30-34 

4 Machine language instructions 34-43 

5 Instruction execution timing 43-49 

UNIT 2: INSTRUCTION SET OF 8086: 

1 Assembler instruction format 51 

2 data transfer and arithmetic 51-52 

3 
branch type, loop, NOP & HALT, flag manipulation, logical and shift 

and rotate instructions 
53-72 

4 Directives and operators 72-74 

5 Illustration of these instructions with example programs 74-79 

UNIT 3: BYTE AND STRING MANIPULATION: 

1 String instructions 80-83 

2 REP Prefix 83-86 

3 Table translation,Macros 86-96 

4 Data translation 96-105 

5 

Programming using keyboard and video display 

 

105-110 

UNIT 4: 8086 INTERRUPTS: 

1 8086 Interrupts and interrupt responses 111-117 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 4 
 

2 Hardware & software  interrupt applications 117-119 

3 Interrupt examples 119-120 

PART – B : 

UNIT 5: 8086 INTERFACING 

1 Interfacing microprocessor to keyboard  121-124 

2 Interfacing to alphanumeric displays 124-125 

3 

Interfacing a microcomputer to a stepper motor 

 

125-126 

UNIT 6: 8086 BASED MULTIPROCESSING SYSTEMS: 

1 Coprocessor configurations 127-129 

2 The 8087 numeric data processor, data types, processor architecture 129-151 

3 Instruction set and example 152-158 

UNIT 7: SYSTEM BUS STRUCTURE: 

1 Basic 8086 configurations: minimum mode, 159-164 

2 maximum mode 164-166 

3 Bus Interface: peripheral component interconnect (PCI) bus, 166-170 

UNIT 8: 80386, 80486 AND PENTIUM PROCESSORS: 

1 Introduction to the 80386 microprocessor, registers 171-175 

2 Introduction to the Pentium microprocessor. 175-179 

3 Introduction to 80486 microprocessor 179-196 

 

 

 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 5 
 

UNIT -1: 

8086 PROCESSORS: Historical background, The microprocessor-based personal computer 

system, 8086 CPU Architecture, Machine language instructions, Instruction execution timing, 

TEXT BOOKS: 

3. Microcomputer systems-The 8086 / 8088 Family – Y.C. Liu and G. A. Gibson, 2E PHI - 

2003 

4. The Intel Microprocessor, Architecture, Programming and Interfacing-Barry B. Brey, 6e, 

Pearson Education / PHI, 2003 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 6 
 

UNIT -1 

8086 PROCESSORS 

Historical Background: 

The historical events leading to the development of microprocessors are outlined as follows: 

The Mechanical age: 

The computing system existed long before modern electrical and electronic devices were 

invented. During 500 BC, the Babylonians invented the first mechanical calculator called 

Abacus. The abacus which uses strings of beads to perform calculations was used by Babylonian 

priests to keep track of their vast storehouses of grains. Abacus was in use until, Blaise Pascal, a 

mathematician, invented a mechanical calculator constructed of gears and wheels during 1642. 

Each gear contained 10 teeth that, when moved one complete resolution, advanced a second gear 

one place. This is the same principle employed in a car‟s odometer mechanism and is the basis 

for all mechanical calculators. The arrival of the first, practical geared, mechanical machines 

used to compute information automatically dates to early 1800‟s, which is much earlier to the 

invention of electricity. 

Only early pioneer of mechanical computing machinery was Charles Babbage. Babbage 

was commissioned in 1823 by the astronomical society of Britain to produce a programmable 

computing machine. This machine was to generate navigational tables for the royal navy. He 

accepted the challenge and began to create what he called as Analytical Engine. Analytical 

Engine was a mechanical computer that could store 1000 20-digit decimal numbers and a 

variable program that could modify the function of machine so it could perform various 

calculating tasks. Input to the analytical engine was punched cards, which is an idea developed 

by Joseph Jaquard. The development of analytical engine stopped because the machinists at that 

time were unable to create around 50, 000 mechanical parts with enough precision. 

The Electrical age: 

The invention of electric motor by Michael Faraday during 1800‟s lead the way to the 

development of motor-driven adding machines all based on the mechanical calculator developed 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 7 
 

by Blaise Pascal. These electrically driven mechanical calculators were in use until the small 

handheld electronic calculator developed by Bomar was introduced in 1970‟s. Monroe is another 

person who introduced electronic calculators, whose four-function models the size of cash 

register. In 1889, Herman Hollerith developed the punched card for storing data, basically the 

idea was of Jaquard. He also developed a mechanical machine, driven by one of the new electric 

motors that counted, sorted and collated information stored on punched cards. The punched cards 

used in computer systems are often called Hollerith cards, In honor of Herman Hollerith. The 12-

bit code used on a punched card is called the Hollerith code. Electric motor driven mechanical 

machines dominated the computing world until the German inventor konrad Zuse constructed the 

first electronic calculating machine, Z3 in the year 1941. Z3 was used in aircraft and missile 

design during world war II for the German war effort. In the year 1943, Allan Turing invented 

the first electronic computing system made of vacuum tubes, which is called as Colossus. 

Colossus was not programmable; it was a fixed-program computer system, called as special 

purpose computer.  

The first general-purpose, programmable electronic computer system was developed in 

1946 at the University of Pennsylvania. This first modern computer was called the ENIAC 

(Electronics Numerical Integrator And Calculator). The ENIAC was a huge machine, containing 

over 17,000 vacuum tubes and over 500 miles of wires. This massive machine weighted over 30 

tons, yet performed only about 100,000 operations per second. The ENIAC thrust the world into 

the age of electronic computers. The ENIAC was programmed by rewriting its circuits – a 

process that took many workers several days to accomplish. The workers changed the electrical 

connections on plug boards that looked like early telephone switch boards. Another problem with 

the ENIAC was the life of the vacuum tube components, which required frequent 

maintenance.More advancement followed in the computer world with the development of the 

transistor in 1948 at Bell labs followed by the invention of integrated circuit in 1958 by jack 

Kilby of Texas instruments. 

The Microprocessor age: 

With the invention of integrated circuit technology, Intel introduced the world‟s first 

microprocessor, a 4-bit Intel 4004 microprocessor. It addresses a mere 4096 4-bit wide memory 

locations. The 4004 instructions set contained only 45 instructions. It was fabricated with the 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 8 
 

Pchannel MOSFET technology that only allowed it to execute instructions at the slow rate of 50 

KIPS. At first, the applications abounded for this device, like video game systems and small 

microprocessor based control systems. The main problem with this early microprocessors were 

its speed, word width and memory size. Later Intel introduced 4040, an updated version of 4004, 

which operated at higher speed, although it lacked improvements in word width and memory 

size. 

Intel Corporation released the 8008 an extended 8-bit version of 4004. The 8008 addressed an 

expanded memory size (16 Kbytes) and contained additional instruction, totally 48 instructions, 

that provided an opportunity for its application in more advanced systems. Microprocessors were 

then used very extensively for many application developments. Many companies like Intel, 

Motorola, Zilog and many more recognized the demanding requirement of powerful 

microprocessors to the design world. In fulfilling this requirement many powerful 

microprocessors were arrived to the market of which we study the Intel‟s contribution. 

 

The Intel 8080 & 8085: 

 8080 address more memory and execute additional instructions, but it executed them 10 

times faster than 8008. 

 The 8080 was compatible with TTL, whereas the 8008 was not directly compatible. 

 The 8080 also addressed four times more memory (64 Kbytes) than the 8008 (16 

Kbytes). 

Intel corporation introduced 8085, an updated version of 8080. Although only slightly more 

advanced than an 8080 microprocessor, the 8085 executed software at an higher speed. The main 

advantages of the 8085 were its internal clock generator, internal system controller, and higher 

clock frequency. This higher level of component integration reduced the 8085‟s cost and 

increased its usefulness. 

The 16-bit Microprocessor: 

The Intel released 16-bit microprocessors 8086 & 8088, which executed instructions in as little 

as 400ns (2.5 MIPS). The 8086 & 8088 addressed 1 Mbytes of memory, which was 16 timers 

more 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 9 
 

memory than the 8085. 8086/8088 have a small 6-byte instruction cache or queue that pre-

fetched a few instructions before they were executed, which leads to the faster processing. 

8086/8088 has multiply and divide instructions which were missing in 8085. These 

microprocessors are called as CISC (Complex Instruction Set Computers) because of the number 

and complexity of the instructions. The 16-bit microprocessor also provided more internal 

register storage space that the 8-bit microprocessor. Applications such as spread sheets, word 

processors, spelling checkers, and computer-based thesauruses on personal computers are few 

developed using 8086/8088 microprocessors. 

The 80286 microprocessor: 

Even the 1 Mbyte memory on 8086/8088 found limited for the advanced applications. This led 

Intel to introduce the 80286 microprocessor. 80286 follow 8086‟s 16-bit architecture, except it 

can address 16 Mbyte memory system. The instruction set was similar to 8086 except few 

instructions for managing extra 15 Mbytes of memory. The clock speed of 80286 was increased, 

so it executed some instructions in as little as 250 ns (4 MIPS). 

The 32-bit Microprocessors: 

The 80386 Microprocessor: 

The 80386 is the Intel‟s first 32-bit microprocessor. The 80386 has 32-bit data bus and a 32-bit 

memory addresses. The 80386 was available in a few modified versions such as 80386SX, 

80386SL & 80386SLC, which vary in the amount of memory they address. Applications that 

require Graphical User Interface (GUI) were using the 80386 microprocessors. Even applications 

which involve floating-point numbers were using the 80386 microprocessors. The 80386 

included a memory management unit that allowed memory resources to be allocated and 

managed by the operating system. 

The 80486 Microprocessor: 

The 80486 has 80386 like microprocessor, an 80387 like numeric co-processor, and an 8 Kbyte 

cache memory integrated in it. Most of the instructions in 80486 can be executed in a single 

clock instead of two clocks compared to 80386. the average speed improvement of instructions 

was about 50% over the 80386 that operated at the same clock speed. 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 10 
 

The Pentium Microprocessor: 

The Pentium microprocessor was introduced late in 1993 with higher speeds compared to 80486. 

in Pentium cache size was increased to 16 Kbytes from the 8K cache found in the basic version 

of 80486. After Pentium, many versions were introduced, like Pentium Pro, Pentium II, Pentium 

III and Pentium IV with higher capacities. 

The Microprocessor-based personal computer system: 

 

fig (a): The block diagram of a microprocessor-based computer system 

The above figure (a) shows the block diagram of a microprocessor based personal computer 

system. The block diagram comprises of three blocks-memory system, microprocessor and I/O 

system, which are interconnected by the buses. A bus is a set of common connections that carry 

the same type of information. There are 3 types of buses – Address bus, Data bus and Control 

bus in a computer system. 

The memory structure remains same for all the Intel 80x86 through Pentium IV personal 

computer systems. Fig (b) illustrates the memory map of a personal computer system. The 

memory system is divided into three main parts: 

 Transient Program Area (TPA) – 640 Kbytes. 

 System Area – 384 Kbytes. 

  Extended Memory system (XMS) – amount of memory depends on the microprocessor 

used in the personal computer system. 

  



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 11 
 

 

Fig (b): The memory map of the personal computer 

The type of microprocessor in the personal computer system determines whether XMS exists or 

not. 8086 or 8088 (PC or XT10) based computer system consists of 640 Kbytes of TPA and 384 

Kbytes of system area which accounts to the 1 Mbyte of memory and there is no extended 

memory area. The first 1M bytes of memory are called the real or conventional memory because 

each Intel microprocessor is designed to function in this area by using its real mode of operation. 

Computer systems based on the 80286 through P-IV not only contain the TPA (640K bytes) and 

system area (384K bytes), they also contain the extended memory. 

 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 12 
 

a. Transient Program Area (TPA): 

The memory map shown in fig (c) illustrates how the many areas of the TPA are used for system 

programs, data and drivers. It also shows a large area of memory available for application 

programs. The TPA holds the DOS operating system and other programs that control the 

computer system. If the MSDOS version 7.x is used as an operating system, of the 640k bytes of 

TPA, 628k bytes of the memory will be available for application programs. 

 

 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 13 
 

The interrupt vectors accesses various features of DOS, BIOS & applications. The BIOS is a 

collection of programs stored in either a ROM or flash memory that operate many of the I/O 

devices connected to the computer system. The BIOS & DOS communication areas contain 

transient data used by programs to access I/O devices and the internal features of the computer 

system. These are stored in the TPA so they can be changed as the system operates. The IO.sys is 

a program that loads into the TPA from the disk whenever an MSDOS or PCDOS system is 

started. The IO.sys contains programs that allow DOS to use the keyboard, video display, printer, 

and other I/O devices.  

The MSDOS program occupies two areas of memory. One area is 16 bytes in length and 

is located at the top of TPA. The other is much larger and is located near the bottom of TPA. The 

size of the driver area and number of drivers change from one computer to another. Drivers are 

programs that control installable I/O devices such as CD-ROM, Mouse etc. drivers are normally 

files that have an extension of .sys. The COMMAND.com (command processor) controls the 

operation of the computer from the keyboard. The free TPA area holds application programs as 

they are executed. These application programs include word processors, spread sheet programs, 

CAD programs and many more. 

b. The System Area: 

The system area contains programs on either a ROM or flash memory and areas of read/write 

(RAM) memory for the storage. The length of the system area is 384k bytes. Fig (d) shows the 

system area of a typical computer system. The first area of the system space contains video 

display RAM and video control programs on ROM or flash memory. This area starts at location 

A0000h and extends to location C7FFFh. The size and amount of memory used depends on the 

type of the video display adapter attached to the system. Ex: CGA (Color Graphics Adapter), 

EGE (Extended Graphics Adapter) and VGA (Variable Graphics Adapter). Generally the video 

RAM located at A0000h – AFFFFh stores text data. The video BIOS, located on a ROM or flash 

memory, are at locations C0000h – C7FFFh and contain programs that control the video display. 

If a hard disk memory is attached to the computer, the low-level format software will be at 

location C8005h. The area at locations C8000h – DFFFFh is often open or free. This area is used 

for the expanded memory system (EMS) in a PC or XT system, or for the upper memory system 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 14 
 

in an AT system. The expanded memory system allows a 64k byte page frame of memory to be 

used by application programs. 

  Memory locations E0000h – EFFFFh contain the cassette BASIC language on ROM 

found in early IBM personal computer systems. This area is often open or free in newer systems. 

The system BIOS ROM is located in the top 64k bytes of the system area (F0000h – FFFFFh). 

This ROM controls the operation of the basic I/O devices connected to the computer system. It 

doesn‟t control the operation of the video system, which has its own BIOS ROM at location 

C0000h. The first part of the system BIOS (F0000h – F7FFFh) often contains the programs that 

setup the computer and the second part contains procedures that control the basic I/O system. 

 

The I/O space: 

The I/O devices allow the microprocessor to communicate b/w itself and the outside world. The 

I/O space in a computer system extends from I/O port 0000h to port 0FFFFh. This address range 

can access up to 64k different 8-bit I/O devices. 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 15 
 

 

The I/O area contains two major sections. The area below I/O location 0400h is considered 

reserved for system devices. The remaining area is available I/O space for expansion on newer 

systems that extends from I/O port 0400h through 0FFFFh. Generally, I/O addresses b/w 0000h 

and 00FFh address components on the main board of the computer, while addresses between 

0100h and 03FFh address devices located on plug-in cards. 

The Microprocessor: 

The microprocessor is the heart of the microprocessor-based computer system. Microprocessor is 

the controlling element and is sometimes referred to as the Central Processing Unit (CPU). The 

microprocessor controls memory and I/O through a series of connections called buses. The 

microprocessor performs three main tasks for the computer system: 

 Data transfer between itself and the memory or I/O systems. 

 Simple arithmetic and logic operations, and 

 Program flow via simple decisions. 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 16 
 

Although, these are simple tasks, but through them the microprocessor performs virtually any 

series of operations. 

Simple Microcomputer Bus Operation 

1. A microcomputer fetches each program instruction in sequence, decodes the instruction, 

and executes it. 

2.  The CPU in a microcomputer fetches instructions or reads data from memory by sending 

out an address on the address bus and a Memory Read signal on the control bus. The 

memory outputs the addressed instruction or data word to the CPU on the data bus. 

3. The CPU writes a data word to memory by sending out an address on the address bus, 

sending out the data word on the data bus, and sending a Memory write signal to memory 

on the control bus. 

4. To read data from a port, the CPU sends out the port address on the address bus and 

sends an I/O Read signal to the port device on the control bus. Data from the port comes 

into the CPU on the data bus. 

5. To write data to a port, the CPU sends out the port address on the address bus, sends out 

the data to be written to the port on the data bus, and sends an I/O Write signal to the port 

device on the control bus. 

 

 

 

 

 

 

 

 

 

 

 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 17 
 

 

8086 is a 40 pin DIP using MOS technology. It has 2 GND‟s as circuit complexity demands a 

large amount of current flowing through the circuits, and multiple grounds help in dissipating the 

accumulated heat etc. 8086 works on two modes of operation namely, Maximum Mode and 

Minimum Mode. 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 18 
 

 

Pin Description:  

GND – Pin no. 1, 20 Ground 

CLK – Pin no. 19 – Type I Clock: provides the basic timing for the processor and bus 

controller. It is asymmetric with a 33% duty cycle to provide optimized internal timing. 

VCC – Pin no. 40 VCC: +5V power supply pin 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 19 
 

 

Pin Description 

AD15-AD0 – Pin no. 2-16, 39 – Type I/O 

Address Data bus: These lines constitute the time multiplexed memory/ IO address (T1) and 

data (T2, T3, TW, T4) bus. A0 is analogous to BHE for the lower byte of of the data bus, pins 

D7-D0. It is low when a byte is to be transferred on the lower portion of the bus in memory or 

I/O operations. Eight –bit oriented devices tied to the lower half would normally use A0 to 

condition chip select functions. These lines are active HIGH and float to 3-state OFF during 

interrupt acknowledge and local bus “hold acknowledge”. 

 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 20 
 

 

 

A19/S6, A18/S5, A17/S4, A16/S3 – Pin no. 35-38 – Type O 

Address / Status: During T1 these are the four most significant address lines for memory 

operations. During I/O operations these lines are low. During memory and I/O operations, status 

information is available on these lines during T2, T3, TW and T4. The status of the interrupt 

enable FLAG bit (S5) is updated at the beginning of each CLK cycle. A17/S4 and A16/S3 are 

encoded as shown. 

A17/S4 A16/S3 Characteristics 

0 (LOW) 0 Alternate Data 

0 1 Stack 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 21 
 

1(HIGH) 0 Code or None 

1 1 Data 

S6 is 0 (LOW)   

 

 

This information indicates which relocation register is presently being used for data accessing. 

These lines float to 3-state OFF during local bus “hold acknowledge”. 

(iv) Status Pins S0 - S7 

 

Pin Description 

S2 , S1 ,S0 - Pin no. 26, 27, 28 – Type O 

Status: active during T4, T1 and T2 and is returned to the passive state (1,1,1) during T3 or 

during TW when READY is HIGH. This status is used by the 8288 Bus Controller to generate 

all memory and I/O access control signals. Any change by S2 , S1 or S0 during T4 is used to 

indicate the beginning of a bus cycle and the return to the passive state in T3 or TW is used to 

indicate the end of a bus cycle. 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 22 
 

These signals float to 3-state OFF in “hold acknowledge”. These status lines are encoded as 

shown. 

2S  1S  0S  Characteristics 

0(LOW) 0 0 Interrupt acknowledge 

0 0 1 Read I/O Port 

0 1 0 Write I/O Port 

0 1 1 Halt 

1(HIGH) 0 0 Code Access 

1 0 1 Read Memory 

1 1 0 Write Memory 

1 1 1 Passive 

 

Status Details 

      Indication 

0 0 0 Interrupt Acknowledge 

0 0 1 Read I/O port 

0 1 0 Write I/O port 

0 1 1 Halt 

1 0 0 Code access 

1 0 1 Read memory 

1 1 0 Write memory 

1 1 1 Passive 

2S 1S 0S



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 23 
 

 

S4 S3 Indications 

0 0 Alternate data 

0 1 Stack 

1 0 Code or none 

1 1 Data 

 

S5bar----- Value of Interrupt Enable flag 

S6bar----- Always low (logical) indicating 8086 is on the bus. If it is tristated another bus master 

has taken control of the system bus. 

S7bar----- Used by 8087 numeric coprocessor to determine whether the CPU is a 8086 or 8088 

(v) Interrupts 

 

Pin Description: 

NMI – Pin no. 17 – Type I 

Non – Maskable Interrupt: an edge triggered input which causes a type 2 interrupt. A subroutine 

is vectored to via an interrupt vector lookup table located in system memory. NMI is not 

maskable internally by software. A transition from a LOW to HIGH initiates the interrupt at the 

end of the current instruction. This input is internally synchronized. 

INTR – Pin No. 18 – Type I 

Interrupt Request: is a level triggered input which is sampled during the last clock cycle of each 

instruction to determine if the processor should enter into an interrupt acknowledge operation. A 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 24 
 

subroutine is vectored to via an interrupt vector lookup table located in system memory. It can be 

internally masked by software resetting the interrupt enable bit. INTR is internally synchronized. 

This signal is active HIGH. 

(vi) Min mode signals 

 

Pin Description: 

HOLD, HLDA – Pin no. 31, 30 – Type I/O 

HOLD: indicates that another master is requesting a local bus “hold”. To be acknowledged, 

HOLD must be active HIGH. The processor receiving the “hold” request will issue HLDA 

(HIGH) as an acknowledgement in the middle of a T1 clock cycle. Simultaneous with the 

issuance of HLDA the processor will float the local bus and control lines. After HOLD is 

detected as being LOW, the processor will LOWer the HLDA, and when the processor needs to 

run another cycle, it will again drive the local bus and control lines. The same rules as RQ/GT 

apply regarding when the local bus will be released. 

HOLD is not an asynchronous input. External synchronization should be provided if the system 

can not otherwise guarantee the setup time. 

WR - Pin no. 29 – Type O  



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 25 
 

Write: indicates that the processor is performing a write memory or write I/O cycle, depending 

on the state of the M/IO signal. WR is active for T2, T3 and TW of any write cycle. It is active 

LOW, and floats to 3-state OFF in local bus “hold acknowledge”. 

M/IO - Pin no. 28 – type O  

Status line: logically equivalent to S2 in the maximum mode. It is used to distinguish a memory 

access from an I/O access. M/IO becomes valid in the T4 preceding a bus cycle and remains 

valid until the final T4 of the cycle (M=HIGH), IO=LOW). M/IO floats to 3-state OFF in local 

bus “hold acknowledge”. 

DT/R -Pin no. 27 – Type O 

Data Transmit / Receive: needed in minimum system that desires to use an 8286/8287 data bus 

transceiver. It is used to control the direction of data flow through the transceiver. Logically 

DT/R is equivalent to S1 in the maximum mode, and its timing is the same as for M/IO . 

(T=HIGH, R=LOW). This signal floats to 3-state OFF in local bus “hold acknowledge”. 

DEN - Pin no. 26 – Type O 

Data Enable: provided as an output enable for the 8286/8287 in a minimum system which uses 

the transceiver. DEN is active LOW during each memory and I/O access and for INTA cycles. 

For a read or INTA cycle it is active from the middle of T2 until the middle of T4, while for a 

write cycle it is active from the beginning of T2 until the middle of T4. DEN floats to 3-state 

OFF in local bus “hold acknowledge”. 

ALE – Pin no. 25 – Type O 

Address Latch Enable: provided by the processor to latch the address into the 8282/8283 address 

latch. It is a HIGH pulse active during T1 of any bus cycle. Note that ALE is never floated. 

INTA - Pin no. 24 – Type O 

INTA is used as a read strobe for interrupt acknowledge cycles. It is active LOW during T2, T3 

and TW of each interrupt acknowledge cycle. 

(vii) Max mode signals 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 26 
 

 

Pin Description: 

RQ/GT0 , RQ/GT1 - Pin no. 30, 31 – Type I/O 

Request /Grant: pins are used by other local bus masters to force the processor to release the 

local bus at the end of the processor‟s current bus cycle. Each pin is bidirectional with RQ/GT0 

having higher priority than RQ/GT1 . RQ/GT has an internal pull up resistor so may be left 

unconnected. The request/grant sequence is as follows: 

1. A pulse of 1 CLK wide from another local bus master indicates a local bus request (“hold”) to 

the 8086 (pulse 1) 

2. During a T4 or T1 clock cycle, a pulse 1 CLK wide from the 8086 to the requesting master 

(pulse 2), indicates that the 8086 has allowed the local bus to float and that it will enter the “hold 

acknowledge” state at the next CLK. The CPU‟s bus interface unit is disconnected logically from 

the local bus during “hold acknowledge”.  

3. A pulse 1 CLK wide from the requesting master indicates to the 8086 (pulse 3) that the “hold” 

request is about to end and that the 8086 can reclaim the local bus at the next CLK.  

Each master-master exchange of the local bus is a sequence of 3 pulses. There must be 

one dead CLK cycle after each bus exchange. Pulses are active LOW. If the request is made 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 27 
 

while the CPU is performing a memory cycle, it will release the local bus during T4 of the cycle 

when all the following conditions are met: 

1. Request occurs on or before T2. 

2. Current cycle is not the low byte of a word (on an odd address) 

3. Current cycle is not the first acknowledge of an interrupt acknowledge sequence. 

4. A locked instruction is not currently executing. 

LOCK - Pin no. 29 – Type O 

LOCK : output indicates that other system bus masters are not to gain control of the system bus 

while LOCK is active LOW. The LOCK signal is activated by the “LOCK” prefix instruction and 

remains active until the completion of the next instruction. This signal is active LOW, and floats 

to 3-state OFF in “hold acknowledge”. 

QS1, QS0 – Pin no. 24, 25 – Type O 

Queue Status: the queue status is valid during the CLK cycle after which the queue operation is 

performed.  

QS1 and QS0 provide status to allow external tracking of the internal 8086 instruction queue. 

QS1 QS0 Characteristics 

0(LOW) 0 No operation 

0 1 First Byte of Op Code from Queue 

1 (HIGH) 0 Empty the Queue 

1 1 Subsequent byte from Queue 

 

 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 28 
 

 

 

Pin Description: 

RD - Pin no. 34, Type O 

Read: Read strobe indicates that the processor is performing a memory of I/O read cycle, 

depending on the state of the S2 pin. This signal is used to read devices which reside on the 8086 

local bus. RD is active LOW during T2, T3 and TW of any read cycle, and is guaranteed to 

remain HIGH in T2 until the 8086 local bus has floated. This signal floats to 3-state OFF in 

“hold acknowledge”. 

READY – Pin no. 22, Type I 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 29 
 

READY: is the acknowledgement from the addressed memory or I/O device that it will complete 

the data transfer. The READY signal from memory / IO is synchronized by the 8284A Clock 

Generator to form READY. This signal is active HIGH. The 8086 READY input is not 

synchronized. Correct operation is not guaranteed if the setup and hold times are not met. 

TEST - Pin No 23 – Type I 

TEST : input is examined by the “Wait” instruction. If the TEST input is LOW execution 

continues, otherwise the processor waits in an “idle” state. This input is synchronized internally 

during each clock cycle on the leading edge of CLK. 

RESET – Pin no. 21 – Type I 

Reset: causes the processor to immediately terminate its present activity. The signal must be 

active HIGH for at least four clock cycles. It restarts execution, as described in the instruction set 

description, when RESET returns LOW. RESET is internally synchronized. 

BHE/S7 - Pin No. 34 – Type O 

Bus High Enable / Status: During T1 the Bus High Enable signal ( BHE )should be used to 

enable data onto the most significant half of the data bus, pins D15-D8. Eight bit oriented 

devices tied to the upper half of the bus would normally use BHE to condition chip select 

functions. BHE is LOW during T1 for read, write, and interrupt acknowledge cycles when a byte 

is to be transferred on the high portion of the bus. The S,7 status information is available during 

T2, T3 and T4. The signal is active LOW and floats to 3-state OFF in “hold”. It is LOW during 

T1 for the first interrupt acknowledge cycle. 

BHE  A0 Characteristics 

0 0 Whole word 

0 1 Upper byte from / to odd address 

1 0 Lower byte from / to even address 

1 1 None 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 30 
 

 

MN/MX - Pin no. 33 – Type - I 

Minimum / Maximum: indicates what mode the processor is to operate in.  

If the local bus is idle when the request is made the two possible events will follow: 

1. Local bus will be released during the next clock. 

2. A memory cycle will start within 3 clocks. Now the four rules for a currently active memory 

cycle apply with condition number 1 already satisfied. 

8086 CPU ARCHITECTURE 

 

The block diagram of 8086 is as shown. This can be subdivided into two parts, namely the Bus 

Interface Unit and Execution Unit. The Bus Interface Unit consists of segment registers, adder to 

generate 20 bit address and instruction prefetch queue. Once this address is sent out of BIU, the 

instruction and data bytes are fetched from memory and they fill a First In First Out 6 byte 

queue. 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 31 
 

Execution Unit: 

The execution unit consists of scratch pad registers such as 16-bit AX, BX, CX and DX and 

pointers like SP (Stack Pointer), BP (Base Pointer) and finally index registers such as source 

index and destination index registers. The 16-bit scratch pad registers can be split into two 8-bit 

registers.  

For example, AX can be split into AH and AL registers. The segment registers and their default 

offsets are given below. 

Segment Register Default Offset 

CS IP (Instruction Pointer) 

DS SI, DI 

SS SP, BP 

ES DI 

 

The Arithmetic and Logic Unit adjacent to these registers perform all the operations. The results 

of these operations can affect the condition flags.  

Different registers and their operations are listed below: 

Register Operations 

AX Word multiply, Word divide, word I/O 

AL Byte Multiply, Byte Divide, Byte I/O, translate, Decimal Arithmetic 

AH Byte Multiply, Byte Divide 

BX Translate 

CX String Operations, Loops 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 32 
 

CL Variable Shift and Rotate 

DX Word Multiply, word Divide, Indirect I/O 

 

 

 

 

Generation of 20-bit Physical Address: 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 33 
 

 

 

 

 

(a) : CARRY FLAG – SET BY CARRY OUT OF MSB 

(b) : PARITY FLAG – SET IF RESULT HAS EVEN PARITY 

(c) : AUXILIARY CARRY FLAG FOR BCD 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 34 
 

(d) : ZERO FLAG – SET IF RESULT = 0 

(e) : SIGN FLAG = MSB OF RESULT 

(f) : SINGLE STEP TRAP FLAG 

(g) : INTERRUPT ENABLE FLAG 

(h) : STRING DIRECTION FLAG 

(i) : OVERFLOW FLAG 

There are three internal buses, namely A bus, B bus and C bus, which interconnect the various 

blocks inside 8086. 

 The execution of instruction in 8086 is as follows: 

The microprocessor unit (MPU) sends out a 20-bit physical address to the memory and fetches 

the first instruction of a program from the memory. Subsequent addresses are sent out and the 

queue is filled upto 6 bytes. The instructions are decoded and further data (if necessary) are 

fetched from memory. After the execution of the instruction, the results may go back to memory  

or to the output peripheral devices as the case may be.  

 

Machine language: 

Addressing modes of 8086 

When 8086 executes an instruction, it performs the specified function on data. These data are 

called its operands and may be part of the instruction, reside in one of the internal registers of the  

types of operands, the 8086 is provided with various addressing modes (Data Addressing 

Modes). 

Data Addressing Modes of 8086  

The 8086 has 12 addressing modes. The various 8086 addressing modes can be classified into 

five groups. 

A. Addressing modes for accessing immediate and register data (register and immediate modes). 

B. Addressing modes for accessing data in memory (memory modes) 

C. Addressing modes for accessing I/O ports (I/O modes) 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 35 
 

D. Relative addressing mode 

E. Implied addressing mode 

8086 ADDRESSING MODES 

A. Immediate addressing mode: 

In this mode, 8 or 16 bit data can be specified as part of the instruction. 

 

Example 1 : MOV CL, 03 H 

Moves the 8 bit data 03 H into CL 

Example 2 : MOV DX, 0525 H 

Moves the 16 bit data 0525 H into DX 

In the above two examples, the source operand is in immediate mode and the destination operand 

is in register mode. 

 A constant such as “VALUE” can be defined by the assembler EQUATE directive such as 

VALUE EQU 35H 

Example : MOV BH, VALUE 

Used to load 35 H into BH 

Register addressing mode : 

The operand to be accessed is specified as residing in an internal register of 8086. Fig. below 

shows internal registers, any one can be used as a source or destination operand, however only 

the data registers can be accessed as either a byte or word. 

 

Register 

Operand sizes 

Byte (Reg 8) Word (Reg 16) 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 36 
 

Accumulator AL, AH Ax 

Base BL, BH Bx 

Count CL, CH Cx 

Data DL, DH Dx 

Stack pointer - SP 

Base pointer - BP 

Source index - SI 

Destination index - DI 

Code Segment - CS 

Data Segment - DS 

Stack Segment - SS 

Extra Segment - ES 

 

 

 

Example 1 : MOV DX (Destination Register) , CX (Source Register) 

Which moves 16 bit content of CS into DX. 

Example 2 : MOV CL, DL 

Moves 8 bit contents of DL into CL 

MOV BX, CH is an illegal instruction. 

* The register sizes must be the same. 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 37 
 

B. Direct addressing mode : 

The instruction Opcode is followed by an affective address, this effective address is directly used 

as the 16 bit offset of the storage location of the operand from the location specified by the 

current value in the selected segment register. 

The default segment is always DS. 

The 20 bit physical address of the operand in memory is normally obtained as 

PA = DS : EA 

But by using a segment override prefix (SOP) in the instruction, any of the four segment 

registers can be referenced, 

 

 

The Execution Unit (EU) has direct access to all registers and data for register and immediate 

operands. However the EU cannot directly access the memory operands. It must use the BIU, in 

order to access memory operands. In the direct addressing mode, the 16 bit effective address 

(EA) is taken directly from the displacement field of the instruction. 

Example 1 : MOV CX, START 

If the 16 bit value assigned to the offset START by the programmer using an assembler pseudo 

instruction such as DW is 0040 and [DS] = 3050. Then BIU generates the 20 bit physical address 

30540 H. The content of 30540 is moved to CL The content of 30541 is moved to CH 

Example 2 : MOV CH, START 

If [DS] = 3050 and START = 0040  



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 38 
 

8 bit content of memory location 30540 is moved to CH. 

Example 3 : MOV START, BX 

With [DS] = 3050, the value of START is 0040. 

Physical address : 30540 

MOV instruction moves (BL) and (BH) to locations 30540 and 30541 respectively. 

Register indirect addressing mode : 

The EA is specified in either pointer (BX) register or an index (SI or DI) register. The 20 bit 

physical address is computed using DS and EA. 

Example : MOV [DI], BX 

If [DS] = 5004, [DI] = 0020, [Bx] = 2456 PA=50060. 

The content of BX(2456) is moved to memory locations 50060 H and 50061 H. 

 

 

Based addressing mode: 

 

when memory is accessed PA is computed from BX and DS when the stack is accessed PA is 

computed from BP and SS. 

Example : MOV AL, START [BX] 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 39 
 

or 

MOV AL, [START + BX] based mode 

EA : [START] + [BX] 

PA : [DS] + [EA] 

The 8 bit content of this memory location is moved to AL. 

Indexed addressing mode: 

 

 

Example : MOV BH, START [SI] 

PA : [SART] + [SI] + [DS] 

The content of this memory is moved into BH. 

Based Indexed addressing mode: 

 

 

Example : MOV ALPHA [SI] [BX], CL 

If [BX] = 0200, ALPHA – 08, [SI] = 1000 H and [DS] = 3000 

Physical address (PA) = 31208 

8 bit content of CL is moved to 31208 memory address. 

String addressing mode: 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 40 
 

The string instructions automatically assume SI to point to the first byte or word of the source 

operand and DI to point to the first byte or word of the destination operand. The contents of SI 

and DI are automatically incremented (by clearing DF to 0 by CLD instruction) to point to the 

next byte or word. 

Example : MOV S BYTE 

If [DF] = 0, [DS] = 2000 H, [SI] = 0500, 

[ES] = 4000, [DI] = 0300 

Source address : 20500, assume it contains 38 

PA : [DS] + [SI] 

Destination address : [ES] + [DI] = 40300, assume it contains 45 

After executing MOV S BYTE, 

[40300] = 38 

[SI] = 0501 incremented 

[DI] = 0301 

C. I/O mode (direct) : 

Port number is an 8 bit immediate operand. 

Example : OUT 05 H, AL 

Outputs [AL] to 8 bit port 05 H 

I/O mode (indirect): 

The port number is taken from DX. 

Example 1 : INAL, DX 

If [DX] = 5040 

8 bit content by port 5040 is moved into AL. 

Example 2 : IN AX, DX 

Inputs 8 bit content of ports 5040 and 5041 into AL and AH respectively. 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 41 
 

D. Relative addressing mode: 

Example : JNC START 

If CY=O, then PC is loaded with current PC contents plus 8 bit signed value of START, 

otherwise the next instruction is executed. 

E. Implied addressing mode: 

Instruction using this mode have no operands. 

Example : CLC which clears carry flag to zero. 

 

 

 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 42 
 

Special functions of general-purpose registers: 

AX & DX registers: 

In 8 bit multiplication, one of the operands must be in AL. The other operand can be a byte in 

memory location or in another 8 bit register. The resulting 16 bit product is stored in AX, with 

AH storing the MS byte. 

In 16 bit multiplication, one of the operands must be in AX. The other operand can be a word in 

memory location or in another 16 bit register. The resulting 32 bit product is stored in DX and 

AX, with DX storing the MS word and AX storing the LS word. 

BX register : In instructions where we need to specify in a general purpose register the 16 bit 

effective address of a memory location, the register BX is used (register indirect). 

CX register : In Loop Instructions, CX register will be always used as the implied counter. In 

I/O instructions, the 8086 receives into or sends out data from AX or AL depending as a word or 

byte operation. In these instructions the port address, if greater than FFH has to be given as the 

contents of DX register. 

Ex : IN AL, DX 

DX register will have 16 bit address of the I/P device 

Physical Address (PA) generation : 

Generally Physical Address (20 Bit) = Segment Base Address (SBA)+ Effective Address (EA) 

Code Segment : 

Physical Address (PA) = CS Base Address+ Instruction Pointer (IP) 

Data Segment (DS) 

PA = DS Base Address + EA can be in BX or SI or DI 

Stack Segment (SS) 

PA + SS Base Address + EA can be SP or BP 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 43 
 

Extra Segment (ES) 

PA = ES Base Address + EA in DI 

Instruction execution timing 

Instruction Format : 

The 8086 instruction sizes vary from one to six bytes. The OP code occupies six bytes and it 

defines the operation to be carried out by the instruction. Register Direct bit (D) occupies one bit. 

It defines whether the register operand in byte 2 is the source or destination operand. 

D=1 Specifies that the register operand is the destination operand. 

D=0 indicates that the register is a source operand. 

Data size bit (W) defines whether the operation to be performed is an 8 bit or 16 bit data 

W=0 indicates 8 bit operation 

W=1 indicates 16 bit operation 

 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 44 
 

The second byte of the instruction usually identifies whether one of the operands is in memory or 

whether both are registers. 

This byte contains 3 fields. These are the mode (MOD) field, the register (REG) field and the 

Register/Memory (R/M) field. 

MOD (2 bits) Interpretation 

00 Memory mode with no displacement follows except for 16 bit 

displacement when R/M=110 

01 Memory mode with 8 bit displacement 

10 Memory mode with 16 bit displacement 

11 Register mode (no displacement) 

 

Register field occupies 3 bits. It defines the register for the first operand which is specified as 

source or destination by the D bit. 

REG W=0 W=1 

000 AL AX 

001 CL CX 

010 DL DX 

011 BL BX 

100 AH SP 

101 CH BP 

110 DH SI 

111 BH DI 

 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 45 
 

 

The R/M field occupies 3 bits. The R/M field along with the MOD field defines the second 

operand as shown below. 

MOD 11 

 

R/M W=0 W=1 

000 AL AX 

001 CL CX 

010 DL DX 

011 BL BX 

100 AH SP 

101 CH BP 

110 DH SI 

111 BH DI 

 

 

Effective Address Calculation 

R/M MOD=00 MOD 01 MOD 10 

000 (BX) + (SI) (BX)+(SI)+D8 (BX)+(SI)+D16 

001 (BX)+(DI) (BX)+(DI)+D8 (BX)+(DI)+D16 

010 (BP)+(SI) (BP)+(SI)+D8 (BP)+(SI)+D16 

011 (BP)+(DI) (BP)+(DI)+D8 (BP)+(DI)+D10 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 46 
 

100 (SI) (SI) + D8 (SI) + D16 

101 (DI) (DI) + D8 (DI) + D16 

110 Direct address (BP) + D8 (BP) + D16 

111 (BX) (BX) + D8 (BX) + D16 

 

In the above, encoding of the R/M field depends on how the mode field is set. If MOD=11 

(register to register mode), this R/M identifies the second register operand. MOD selects memory 

mode, then R/M indicates how the effective address of the memory operand 

is to be calculated. Bytes 3 through 6 of an instruction are optional fields that normally contain 

the displacement value of a memory operand and / or the actual value of an immediate constant 

operand. 

Example 1 : MOV CH, BL 

This instruction transfers 8 bit content of BL 

Into CH 

The 6 bit Opcode for this instruction is 1000102 D bit indicates whether the register specified by 

the REG field of byte 2 is a source or destination operand. 

D=0 indicates BL is a source operand. 

W=0 byte operation 

In byte 2, since the second operand is a register MOD field is 112. 

The R/M field = 101 (CH) 

Register (REG) field = 011 (BL) 

Hence the machine code for MOV CH, BL is 

10001000 11 011 101 

Byte 1 Byte2 

= 88DD16 

Example 2 : SUB Bx, (DI) 

This instruction subtracts the 16 bit content of memory location addressed by DI and DS from 

Bx. 

The 6 bit Opcode for SUB is 0010102. 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 47 
 

D=1 so that REG field of byte 2 is the destination operand. W=1 indicates 16 bit operation. 

MOD = 00 

REG = 011 

R/M = 101 

The machine code is 0010 1011 0001 1101 

2         B         1     D 

 

es 

Example 3 :Code for MOV 1234 (BP), DX 

Here we have specify DX using REG field, the D bit must be 0, indicating the DX is the source 

register. The REG field must be 010 to indicate DX register. The W bit must be 1 to indicate it is 

a word operation. 1234 [BP] is specified using MOD value of 10 and R/M value of 110 and a 

displacement of 1234H. The 4 byte code for this instruction would be 89 96 34 12H. 

MOD / R/M Memory Mode (EA Calculation) Register Mode 

 00 01 10 W=0 W=1 

000 (BX)+(SI) (BX)+(SI)+d8 (BX)+(SI)+d16 AL AX 

001 (BX) + (DI) (BX)+(DI)+d8 (BX)+(DI)+d16 CL CX 

010 (BP)+(SI) (BP)+(SI)+d8 (BP)+(SI)+d16 DL DX 

011 (BP)+(DI) (BP)+(DI)+d8 (BP)+(DI)+d16 BL BX 

100 (SI) (SI) + d8 (SI) + d16 AH SP 

101 (DI) (DI) + d8 (DI) + d16 CH BP 

110 d16 (BP) + d8 (BP) + d16 DH SI 

111 (BX) (BX) + d8 (BX) + d16 BH DI 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 48 
 

 

Opcode D W MOD REG R/M LB displacement HB displacement 

100010 0 1 10 010 110 34H 12H 

 

 Example 4 :Code for MOV DS : 2345 [BP], DX 

Here we have to specify DX using REG field. The D bit must be o, indicating that Dx is the 

source register. The REG field must be 010 to indicate DX register. The w bit must be 1 to 

indicate it is a word operation. 2345 [BP] is specified with MOD=10 and R/M = 110 and 

displacement = 2345 H. Whenever BP is used to generate the Effective Address (EA), the default 

segment would be SS. In this example, we want the segment register to be DS, we have to 

provide the segment override prefix byte (SOP byte) to start with. The SOP byte is 001 SR 110, 

where SR value is provided as per table shown below. 

SR Segment register 

00 ES 

01 CS 

10 SS 

11 DS 

 

To specify DS register, the SOP byte would be 001 11 110 = 3E H. Thus the 5 byte code for this 

instruction would be 3E 89 96 45 23 H. 

SOP Opcode D W MOD REG R/M LB disp. HD disp. 

3EH 1000 10 0 1 10 010 110 45 23 

 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 49 
 

Suppose we want to code MOV SS : 2345 (BP), DX. This generates only a 4 byte code, without 

SOP byte, as SS is already the default segment register in this case. 

UNIT: 2 

 

INSTRUCTION SET OF 8086: Assembler instruction format, data transfer and arithmetic, 

branch type, loop, NOP & HALT, flag manipulation, logical and shift and rotate instructions. 

Illustration of these instructions with example programs, Directives and operators 

 

TEXT BOOKS: 

1. Microcomputer systems-The 8086 / 8088 Family – Y.C. Liu and G. A. Gibson, 2E PHI - 

2003 

2. The Intel Microprocessor, Architecture, Programming and Interfacing-Barry B. Brey, 

6e, Pearson Education / PHI, 2003 

 

 

 

 

 

 

 

 

 

 

 

  

 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 50 
 

 

  



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 51 
 

UNIT: 2 

INSTRUCTION SET OF 8086 

Instruction Set 

We only cover the small subset of the 8088 instruction set that is essential. In particular, we will 

not mention various registers, addressing modes and instructions that could often provide faster 

ways of doing things.A summary of the 80x86 protected-mode instruction set is available on the 

course Web page and should be printed out if you don‟t have another reference. 

Data Transfer 

The MOV instruction is used to transfer 8 and 16-bit data to and from registers. Either the source 

or destination has to be a register. The other operand can come from another register, from 

memory, from immediate data (a value included in the instruction) or from a memory location 

“pointed at” by register BX. For example, if COUNT is the label of a memory location the 

following are possible assemblylanguage 

instructions : ; 

register: move contents of BX to AX 

MOV AX,BX ; direct: move contents of AX to memory 

MOV COUNT,AX ; immediate: load CX with the value 240 

MOV CX,0F0H; memory: load CX with the value at 

; address 240 

MOV CX,[0F0H]; register indirect: move contents of AL 

; to memory location in BX 

MOV [BX],AL 

Most 80x86 assemblers keep track of the type of each symbol and require a type “override” 

when the symbol is used in a different way. The OFFSET operator to convert a memory 

reference to a 16-bit value. 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 52 
 

For example: 

MOV BX,COUNT ; load the value at location COUNT 

MOV BX,OFFSET COUNT ; load the offset of COUNT 

16-bit registers can be pushed (the SP is first decremented by two and then the value stored at 

SP) 

or popped (the value is restored from the memory at SP and then SP is incremented by 2). For 

example: 

PUSH AX ; push contents of AX 

POP BX ; restore into BX 

Arithmetic instruction: 

Arithmetic/Logic 

Arithmetic and logic instructions can be performed on byte and 16-bit values. The first operand 

has to be a register and the result is stored in that register. 

; increment BX by 4 

ADD BX,4 

; subtract 1 from AL 

SUB AL,1 

; increment BX 

INC BX 

; compare (subtract and set flags  but without storing result) 

CMP AX,[MAX] 

; mask in LS 4 bits of AL 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 53 
 

AND AL,0FH 

; divide AX by two 

SHR AX 

; set MS bit of CX 

OR CX,8000H 

; clear AX 

XOR AX,AX 

The LOOP Instruction 

This instruction decrements the cx register and then branches to the target location if the cx 

register does not contain zero. Since this instruction decrements cx then checks for zero, if cx 

originally contained zero, any loop you create using the loop instruction will repeat 65,536 times. 

If you do not want to execute the loop when cx contains zero, use jcxz to skip over the loop. 

There is no “opposite” form of the loop instruction, and like the jcxz/jecxz instructions the range 

is limited to ±128 bytes on all processors. If you want to extend the range of this instruction, you 

will need to break it down into discrete components: 

; “loop lbl” becomes: 

dec cx 

jne lbl 

There is no eloop instruction that decrements ecx and branches if not zero (there is a loope 

instruction, but it does something else entirely). The reason is quite simple. As of the 80386, 

Intel‟s designers stopped wholeheartedly supporting the loop instruction. Oh, it‟s there to ensure 

compatibility with older code, but it turns out that the dec/jne instructions are actually faster on 

the 32 bit processors. Problems in the decoding of the instruction and the operation of the 

pipeline are responsible for this strange turn of events. Although the loop instruction‟s name 

suggests that you would normally create loops with it, keep in mind that all it is really doing is 

decrementing cx and branching to the target address if cx does not contain zero after the 

decrement. You can use this instruction anywhere you want to decrement cx and then check for a 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 54 
 

zero result, not just when creating loops. Nonetheless, it is a very convenient instruction to use if 

you simply want to repeat a sequence of instructions some number of times. For example, the 

following loop initializes a 256 element array of bytes to the values 1, 2, 3, ... 

mov ecx, 255 

ArrayLp: mov Array[ecx], cl 

loop ArrayLp 

mov Array[0], 0 

The last instruction is necessary because the loop does not repeat when cx is zero. Therefore, the 

last element of the array that this loop processes is Array[1], hence the last instruction. The loop 

instruction does not affect any flags. 

The LOOPE/LOOPZ Instruction 

Loope/loopz (loop while equal/zero, they are synonyms for one another) will branch to the target 

address if cx is not zero and the zero flag is set. This instruction is quite useful The 80x86 

Instruction Set after cmp or cmps instruction, and is marginally faster than the comparable 

80386/486 instructions if you use all the features of this instruction. However, this instruction 

plays havoc with the pipeline and superscalar operation of the Pentium so you‟re probably better 

off sticking with discrete instructions rather than using this instruction. This instruction does the 

following: 

cx := cx - 1 

if ZeroFlag = 1 and cx ¹ 0, goto target The loope instruction falls through on one of two 

conditions. Either the zero flag is clear or the instruction decremented cx to zero. By testing the 

zero flag after the loop instruction (with a je or jne instruction, for example), you can determine 

the cause of termination. This instruction is useful if you need to repeat a loop while some value 

is equal to another, but there is a maximum number of iterations you want to allow. For example, 

the following loop scans through an array looking for the first non-zero byte, but it does not scan 

beyond the end of the array: 

mov cx, 16 ;Max 16 array elements. 

mov bx, -1 ;Index into the array (note next inc). 

SearchLp: inc bx ;Move on to next array element. 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 55 
 

cmp Array[bx], 0 ;See if this element is zero. 

loope SearchLp ;Repeat if it is. 

je AllZero ;Jump if all elements were zero. 

Note that this instruction is not the opposite of loopnz/loopne. If you need to extend this jump 

beyond ±128 bytes, you will need to synthesize this instruction using discrete instructions. For 

example, if loop target is out of range, you would need to use an instruction sequence like the 

following: 

jne quit 

dec cx 

je Quit2 

jmp Target 

quit: dec cx ;loope decrements cx, even if ZF=0. 

quit2: 

The loope/loopz instruction does not affect any flags. 

The LOOPNE/LOOPNZ Instruction 

This instruction is just like the loope/loopz instruction in the previous section except 

loopne/loopnz (loop while not equal/not zero) repeats while cx is not zero and the zero flag is 

clear. The algorithm is 

cx := cx - 1 

if ZeroFlag = 0 and cx ¹ 0, goto target 

You can determine if the loopne instruction terminated because cx was zero or if the zero flag 

was set by testing the zero flag immediately after the loopne instruction. If the zero flag is clear 

at that point, the loopne instruction fell through because it decremented cx to zero. Otherwise it 

fell through because the zero flag was set. 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 56 
 

This instruction is not the opposite of loope/loopz. If the target address is out of range, you will 

need to use an instruction sequence like the following: 

je quit 

dec cx 

je Quit2 

jmp Target 

quit: dec cx ;loopne decrements cx, even if ZF=1. 

quit2: 

You can use the loopne instruction to repeat some maximum number of times while waiting for 

some other condition to be true. For example, you could scan through an array until you exhaust 

the number of array elements or until you find a certain byte using a loop like the following:  

mov cx, 16 ;Maximum # of array elements. 

mov bx, -1 ;Index into array. 

LoopWhlNot0: inc bx ;Move on to next array element. 

cmp Array[bx],0 ;Does this element contain zero? 

loopne LoopWhlNot0 ;Quit if it does, or more than 16 bytes. 

Although the loope/loopz and loopne/loopnz instructions are slower than the individual 

instruction from which they could be synthesized, there is one main use for these instruction 

forms where speed is rarely important; indeed, being faster would make them less useful – 

timeout loops during I/O operations. Suppose bit #7 of input port 379h contains a one if the 

device is busy and contains a zero if the device is not busy. If you want to output data to the port, 

you could use code like the following: 

mov dx, 379h 

WaitNotBusy: in al, dx ;Get port 

test al, 80h ;See if bit #7 is one 

jne WaitNotBusy ;Wait for “not busy” 

The only problem with this loop is that it is conceivable that it would loop forever. In a real 

system, a cable could come unplugged, someone could shut off the peripheral device, and any 

number of other things could go wrong that would hang up the system.Robust programs usually 

apply a timeout to a loop like this. If the device fails to become busy within some specified 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 57 
 

amount of time, then the loop exits and raises an error condition. The following code will 

accomplish this: mov dx, 379h ;Input port address 

mov cx, 0 ;Loop 65,536 times and then quit. 

WaitNotBusy: in al, dx ;Get data at port. 

test al, 80h ;See if busy 

loopne WaitNotBusy ;Repeat if busy and no time out. 

jne TimedOut ;Branch if CX=0 because we timed out. 

You could use the loope/loopz instruction if the bit were zero rather than one. The loopne/loopnz 

instruction does not affect any flags. 

Logical, Shift, Rotate and Bit Instructions 

The 80x86 family provides five logical instructions, four rotate instructions, and three shift 

instructions. The logical instructions are and, or, xor, test, and not; the rotates are ror, rol, rcr, 

and rcl; the shift instructions are shl/sal, shr, and sar. The 80386 and later processors provide an 

even richer set of operations. These are bt, bts, btr, btc, bsf, bsr, shld, shrd, and theconditional set 

instructions (setcc). These instructions can manipulate bits, convert values, do logical operations, 

pack and unpack data, and do arithmetic operations. The following sections describe each of 

these instructions in detail. 

The Logical Instructions: AND, OR, XOR, and NOT 

The 80x86 logical instructions operate on a bit-by-bit basis. Both eight, sixteen, and thirty-two 

bit versions of each instruction exist. The and, not, or, and xor instructions do the following: 

and dest, source ;dest := dest and source 

or dest, source ;dest := dest or source 

xor dest, source ;dest := dest xor source 

not dest ;dest := not dest 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 58 
 

The specific variations are 

and reg, reg 

and mem, reg 

and reg, mem 

and reg, immediate data 

and mem, immediate data 

and eax/ax/al, immediate data 

or uses the same formats as AND 

xor uses the same formats as AND 

not register 

not mem 

Except not, these instructions affect the flags as follows: 

• They clear the carry flag. 

• They clear the overflow flag. 

• They set the zero flag if the result is zero, they clear it otherwise. 

• They copy the H.O. bit of the result into the sign flag. 

• They set the parity flag according to the parity (number of one bits) in the result. 

• They scramble the auxiliary carry flag. The not instruction does not affect any flags. Testing 

the zero flag after these instructions is particularly useful. The and instruction sets the zero flag if 

the two operands do not have any ones in corresponding bit positions (since this would produce a 

zero result); for example, if the source operand contained a single one bit, then the zero flag will 

be set if the corresponding destination bit is zero, itwill be one otherwise. The or instruction will 

only set the zero flag if both operands contain zero. The xor instruction will set the zero flag only 

if both operands are equal. Noticethat the xor operation will produce a zero result if and only if 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 59 
 

the two operands are equal. Many programmers commonly use this fact to clear a sixteen bit 

register to zero since an instruction of the form Xor reg16, reg16 is shorter than the comparable 

mov reg,0 instruction. Like the addition and subtraction instructions, the and, or, and xor 

instructions provide special forms involving the accumulator register and immediate data. These 

forms are shorter and sometimes faster than the general “register, immediate” forms. Although 

one does not normally think of operating on signed data with these instructions, the 80x86 does 

provide a special form of the “reg/mem, immediate”instructions that sign extend a value in the 

range -128..+127 to sixteen or thirty-two bits, as necessary.The instruction‟s operands must all 

be the same size. On pre-80386 processors theycan be eight or sixteen bits. On 80386 and later 

processors, they may be 32 bits long as well. These instructions compute the obvious bitwise 

logical operation on their operands, You can use the and instruction to set selected bits to zero in 

the destination operand. This is known as masking out data; see for more details. Likewise, you 

can use the or instruction to force certain bits to one in the destination operand; see “Masking 

Operations  

with the OR Instruction” on page 491 for the details. You can use these instructions, along with 

the shift and rotate instructions described next, to pack and unpack data. 

The Shift Instructions: SHL/SAL, SHR, SAR, SHLD, and SHRD 

The 80x86 supports three different shift instructions (shl and sal are the same instruction): shl 

(shift left), sal (shift arithmetic left), shr (shift right), and sar (shift arithmetic right). The 80386 

and later processors provide two additional shifts: shld and shrd. The shift instructions move bits 

around in a register or memory location. The general format for a shift instruction is 

shl dest, count 

sal dest, count 

shr dest, count 

sar dest, count 

Dest is the value to shift and count specifies the number of bit positions to shift. For example, the 

shl instruction shifts the bits in the destination operand to the left the number of bit positions 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 60 
 

specified by the count operand. The shld and shrd instructions use the format: 

shld dest, source, count 

shrd dest, source, count 

The specific forms for these instructions are 

shl reg, 1 

shl mem, 1 

shl reg, imm (2) 

shl mem, imm (2) 

shl reg, cl 

shl mem, cl 

sal is a synonym for shl and uses the same formats. 

shr uses the same formats as shl. 

sar uses the same formats as shl. 

shld reg, reg, imm (3) 

shld mem, reg, imm (3) 

shld reg, reg, cl (3) 

shld mem, reg, cl (3) 

shrd uses the same formats as shld. 

2- This form is available on 80286 and later processors only. 

3- This form is available on 80386 and later processors only. 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 61 
 

For 8088 and 8086 CPUs, the number of bits to shift is either “1” or the value in cl. On 80286 

and later processors you can use an eight bit immediate constant. Of course, the value in cl or the 

immediate constant should be less than or equal to the number of bits in the destination operand. 

It would be a waste of time to shift left al by nine bits (eight would produce the same result, as 

you will soon see). Algorithmically, you can think of the shift operations with a count other than 

one as follows: 

for temp := 1 to count do 

shift dest, 1 

There are minor differences in the way the shift instructions treat the overflow flag when the 

count is not one, but you can ignore this most of the time. The shl, sal, shr, and sar instructions 

work on eight, sixteen, and thirty-two bit operands. The shld and shrd instructions work on 16 

and 32 bit destination operands only. 

SHL/SAL 

The shl and sal mnemonics are synonyms. They represent the same instruction and use identical 

binary encodings. These instructions move each bit in the destination operand one bit position to 

the left the number of times specified by the count operand. Zeros fill vacated positions at the 

L.O. bit; the H.O. bit shifts into the carry flag (see Figure 6.2). 

The shl/sal instruction sets the condition code bits as follows: 

• If the shift count is zero, the shl instruction doesn‟t affect any flags. 

• The carry flag contains the last bit shifted out of the H.O. bit of the operand. 

• The overflow flag will contain one if the two H.O. bits were different prior to a single bit shift. 

The overflow flag is undefined if the shift count is not one. 

• The zero flag will be one if the shift produces a zero result. 

• The sign flag will contain the H.O. bit of the result. 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 62 
 

• The parity flag will contain one if there are an even number of one bits in the L.O. byte of the 

result. 

• The A flag is always undefined after the shl/sal instruction. 

The shift left instruction is especially useful for packing data. For example, suppose you have 

two nibbles in al and ah that you want to combine. You could use the following code to do this: 

shl ah, 4 ;This form requires an 80286 or later 

or al, ah ;Merge in H.O. four bits. 

Of course, al must contain a value in the range 0..F for this code to work properly (the shift left 

operation automatically clears the L.O. four bits of ah before the or instruction). If the H.O. four 

bits of al are not zero before this operation, you can easily clear them with an and instruction: 

shl ah, 4 ;Move L.O. bits to H.O. position. 

and al, 0Fh ;Clear H.O. four bits. 

or al, ah ;Merge the bits. 

Since shifting an integer value to the left one position is equivalent to multiplying that value by 

two, you can also use the shift left instruction for multiplication by powers of two: 

shl ax, 1 ;Equivalent to AX*2 

shl ax, 2 ;Equivalent to AX*4 

shl ax, 3 ;Equivalent to AX*8 

shl ax, 4 ;Equivalent to AX*16 

shl ax, 5 ;Equivlaent to AX*32 

shl ax, 6 ;Equivalent to AX*64 

shl ax, 7 ;Equivalent to AX*128 

shl ax, 8 ;Equivalent to AX*256 

etc. 

Note that shl ax, 8 is equivalent to the following two instructions: 

mov ah, al 

mov al, 0 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 63 
 

The shl/sal instruction multiplies both signed and unsigned values by two for each shift. This 

instruction sets the carry flag if the result does not fit in the destination operand (i.e., unsigned 

overflow occurs). Likewise, this instruction sets the overflow flag if the signed result does not fit 

in the destination operation. This occurs when you shift a zero into the H.O. bit of a negative 

number or you shift a one into the H.O. bit of a non-negative number. 

SAR 

The sar instruction shifts all the bits in the destination operand to the right one bit, replicating the 

H.O. bit (see Figure 6.3). The sar instruction sets the flag bits as follows: 

• If the shift count is zero, the sar instruction doesn‟t affect any flags. 

• The carry flag contains the last bit shifted out of the L.O. bit of the operand. 

• The overflow flag will contain zero if the shift count is one. Overflow can never occur with this 

instruction. However, if the count is not one, the value of the overflow flag is undefined. 

• The zero flag will be one if the shift produces a zero result. 

• The sign flag will contain the H.O. bit of the result. 

• The parity flag will contain one if there are an even number of one bits in the L.O. byte of the 

result. 

• The auxiliary carry flag is always undefined after the sar instruction. 

The sar instruction‟s main purpose is to perform a signed division by some power of two. Each 

shift to the right divides the value by two. Multiple right shifts divide the previous shifted result 

by 

two, so multiple shifts produce the following results: 

sar ax, 1 ;Signed division by 2 

sar ax, 2 ;Signed division by 4 

sar ax, 3 ;Signed division by 8 

sar ax, 4 ;Signed division by 16 

sar ax, 5 ;Signed division by 32 

sar ax, 6 ;Signed division by 64 

sar ax, 7 ;Signed division by 128 

sar ax, 8 ;Signed division by 256 

There is a very important difference between the sar and idiv instructions. The idiv instruction 

always truncates towards zero while sar truncates results toward the smaller result. For positive 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 64 
 

results, an arithmetic shift right by one position produces the same result as an integer division 

bytwo. However, if the quotient is negative, idiv truncates towards zero while sar truncates 

towards negative infinity. The following examples demonstrate the difference: 

mov ax, -15 

cwd 

mov bx, 2 

idiv ;Produces -7 

mov ax, -15 

sar ax, 1 ;Produces -8 

Keep this in mind if you use sar for integer division operations. 

The sar ax, 8 instruction effectively copies ah into al and then sign extends al into ax. This is 

because sar ax, 8 will shift ah down into al but leave a copy of ah‟s H.O. bit in all the bit 

positions of ah. Indeed, you can use the sar instruction on 80286 and later processors to sign 

extend one register into another. The following code sequences provide examples of this usage: 

; Equivalent to CBW: 

mov ah, al 

sar ah, 7 

; Equivalent to CWD: 

mov dx, ax 

sar dx, 15 

; Equivalent to CDQ: 

mov edx, eax 

sar edx, 31 

it may seem silly to use two instructions where a single instruction might suffice; however, the 

cbw, cwd, and cdq instructions only sign extend al into ax, ax into dx:ax, and eax into edx:eax. 

Likewise, the movsx instruction copies its sign extended operand into a destination operand 

twice the size of the source operand. The sar instruction lets you sign extend one register into 

another register of the same size, with the second register containing the sign extension bits: 

; Sign extend bx into cx:bx 

mov cx, bx 

sar cx, 15 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 65 
 

SHR 

The shr instruction shifts all the bits in the destination operand to the right one bit shifting a zero 

into the H.O. bit (see Figure 6.4). 

The shr instruction sets the flag bits as follows: 

• If the shift count is zero, the shr instruction doesn‟t affect any flags. 

• The carry flag contains the last bit shifted out of the L.O. bit of the operand. 

• If the shift count is one, the overflow flag will contain the value of the 

H.O. bit of the operand prior to the shift (i.e., this instruction sets the overflow flag if the sign 

changes). However, if the count is not one, the value of the overflow flag is undefined. 

• The zero flag will be one if the shift produces a zero result. 

• The sign flag will contain the H.O. bit of the result, which is always zero. 

• The parity flag will contain one if there are an even number of one bits in the L.O. byte of the 

result. 

• The auxiliary carry flag is always undefined after the shr instruction. 

The shift right instruction is especially useful for unpacking data. For example, suppose you 

want to extract the two nibbles in the al register, leaving the H.O. nibble in ah and the L.O. 

nibble in al. 

You could use the following code to do this: 

mov ah, al ;Get a copy of the H.O. nibble 

shr ah, 4 ;Move H.O. to L.O. and clear H.O. nibble 

and al, 0Fh ;Remove H.O. nibble from al 

Since shifting an unsigned integer value to the right one position is equivalent to dividing that 

value by two, you can also use the shift right instruction for division by powers of two: 

shr ax, 1 ;Equivalent to AX/2 

shr ax, 2 ;Equivalent to AX/4 

shr ax, 3 ;Equivalent to AX/8 

shr ax, 4 ;Equivalent to AX/16 

shr ax, 5 ;Equivlaent to AX/32 

shr ax, 6 ;Equivalent to AX/64 

shr ax, 7 ;Equivalent to AX/128 

shr ax, 8 ;Equivalent to AX/256 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 66 
 

etc. 

Note that shr ax, 8 is equivalent to the following two instructions: 

mov al, ah 

mov ah, 0 

Remember that division by two using shr only works for unsigned operands. If ax contains -1 

and you execute shr ax, 1 the result in ax will be 32767 (7FFFh), not -1 or zero as you would 

expect. Use the sar instruction if you need to divide a signed integer by some power of two. 

The SHLD and SHRD Instructions 

The shld and shrd instructions provide double precision shift left and right operations, 

respectively. These instructions are available only on 80386 and later processors. Their generic 

forms are 

shld operand1, operand2, immediate 

shld operand1, operand2, cl 

shrd operand1, operand2, immediate 

shrd operand1, operand2, cl 

Operand2 must be a sixteen or thirty-two bit register. Operand1 can be a register or a memory 

location. Both operands must be the same size. The immediate operand can be a value in the 

range zero through n-1, where n is the number of bits in the two operands; it specifies the 

number of bits to shift. The shld instruction shifts bits in operand1 to the left. The H.O. bit shifts 

into the carry flag and the H.O. bit of operand2 shifts into the L.O. bit of perand1. Note that this 

instruction does not modify the value of operand2, it uses a temporary copy of operand2 during 

the shift. The immediate operand specifies the number of bits to shift. If the count is n, then shld 

shifts bit n-1 into the carry flag. It also shifts the H.O. n bits of operand2 into the L.O. n bits of 

operand1. Pictorially, the shld instruction appears in Figure 6.5.The shld instruction sets the flag 

bits as follows: 

• If the shift count is zero, the shld instruction doesn‟t affect any flags. 

• The carry flag contains the last bit shifted out of the H.O. bit of the operand1. 

• If the shift count is one, the overflow flag will contain one if the sign bit of operand1 changes 

during the shift. If the count is not one, the overflow flag is undefined. 

• The zero flag will be one if the shift produces a zero result. 

• The sign flag will contain the H.O. bit of the result. 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 67 
 

The shld instruction is useful for packing data from many different sources. For example, 

suppose you want to create a word by merging the H.O. nibbles of four other words. 

You could do this with the following code: 

mov ax, Value4 ;Get H.O. nibble 

shld bx, ax, 4 ;Copy H.O. bits of AX to BX. 

mov ax, Value3 ;Get nibble #2. 

shld bx, ax, 4 ;Merge into bx. 

mov ax, Value2 ;Get nibble #1. 

shld bx, ax, 4 ;Merge into bx. 

mov ax, Value1 ;Get L.O. nibble 

shld bx, ax, 4 ;BX now contains all four nibbles. 

The shrd instruction is similar to shld except, of course, it shifts its bits right rather than left. 

Double Precision Shift Right Operation 

The shrd instruction sets the flag bits as follows: 

• If the shift count is zero, the shrd instruction doesn‟t affect any flags. 

• The carry flag contains the last bit shifted out of the L.O. bit of the operand1. 

• If the shift count is one, the overflow flag will contain one if the H.O. bit of operand1 changes. 

If the count is not one, the overflow flag is undefined. 

• The zero flag will be one if the shift produces a zero result. 

• The sign flag will contain the H.O. bit of the result. Quite frankly, these two instructions would 

probably be slightly more useful if Operand2 could be a memory location. Intel designed these 

instructions to allow fast multiprecision (64 bits, or more) shifts. For more information on such 

usage, see “Extended Precision Shift Operations” on page 482. 

The shrd instruction is marginally more useful than shld for packing data. For example, suppose 

that ax contains a value in the range 0..99 representing a year (1900..1999), bx contains a value 

in the range 1..31 representing a day, and cx contains a value in the range 1..12 representing a 

month (see “Bit Fields and Packed Data” on page 28). You can easily use the shrd instruction to 

pack this data into dx as follows: 

shrd dx, ax, 7 

shrd dx, bx, 5 

shrd dx, cx, 4 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 68 
 

The Rotate Instructions: RCL, RCR, ROL, and ROR 

The rotate instructions shift the bits around, just like the shift instructions, except the bits shifted 

 out of the operand by the rotate instructions recirculate through the operand. They include rcl 

(rotate through carry left), rcr (rotate through carry right), rol (rotate left), and ror (rotate right). 

These instructions all take the forms: 

Figure 6.7 Packing Data with an SHRD Instruction 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Y Y Y Y Y Y Y 

After SHRD DX, AX, 7 Instruction 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

D D D D D Y Y Y Y Y Y Y 

After SHRD DX, BX, 5 Instruction 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

M M M M D D D D D Y Y Y Y Y Y Y 

After SHRD DX, CX, 4 Instruction 

rcl dest, count 

rol dest, count 

rcr dest, count 

ror dest, count 

The specific forms are 

rcl reg, 1 

rcl mem, 1 

rcl reg, imm (2) 

rcl mem, imm (2) 

rcl reg, cl 

rcl mem, cl 

rol uses the same formats as rcl. 

rcr uses the same formats as rcl. 

ror uses the same formats as rcl. 

2- This form is avialable on 80286 and later processors only. 

RCL 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 69 
 

The rcl (rotate through carry left), as its name implies, rotates bits to the left, through the carry 

flag, and back into bit zero on the right (see Figure 6.8). Note that if you rotate through carry an 

object n+1 times, where n is the number of bits in the object, you wind up with your original 

value. Keep in mind, however, that some flags may contain different values after n+1 rcl 

operations. 

The rcl instruction sets the flag bits as follows: 

• The carry flag contains the last bit shifted out of the H.O. bit of the operand. 

• If the shift count is one, rcl sets the overflow flag if the sign changes as a result of the rotate. If 

the count is not one, the overflow flag is undefined. 

• The rcl instruction does not modify the zero, sign, parity, or auxiliary carry flags. 

Important warning: unlike the shift instructions, the rotate instructions do not affect the sign, 

zero, parity, or auxiliary carry flags. This lack of orthogonality can cause you lots of grief if you 

forget it and attempt to test these flags after an rcl operation. If you need to test one of these flags 

after an rcl operation, test the carry and overflow flags first (if necessary) then compare the result 

to zero to set the other flags. 

RCR 

The rcr (rotate through carry right) instruction is the complement to the rcl instruction. It shifts  

its bits right through the carry flag and back into the H.O. bit (see Figure 6.9).This instruction 

sets the flags in a manner analogous to rcl: 

• The carry flag contains the last bit shifted out of the L.O. bit of the operand. 

• If the shift count is one, then rcr sets the overflow flag if the sign changes (meaning the values 

of the H.O. bit and carry flag were not the same before the execution of the instruction). 

However, if the count is not one, the value of the overflow flag is undefined. 

• The rcr instruction does not affect the zero, sign, parity, or auxiliary carry 

flags. 

ROL 

The rol instruction is similar to the rcl instruction in that it rotates its operand to the left the 

specified number of bits. The major difference is that rol shifts its operand‟s H.O. bit,rather than 

the carry, into bit zero. Rol also copies the output of the H.O. bit into the carry flag (see Figure 

6.10).The rol instruction sets the flags identically to rcl. Other than the source of the value 

shifted into bit zero, this instruction behaves exactly like the rcl instruction Like shl, the rol 

instruction is often useful for packing and unpacking data. For example, suppose you want to 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 70 
 

extract bits 10..14 in ax and leave these bits in bits 0..4. The following code sequences will both 

accomplish this: 

shr ax, 10 

and ax, 1Fh 

rol ax, 6 

and ax, 1Fh 

ROR 

The ror instruction relates to the rcr instruction in much the same way that the rol instruction 

relates to rcl. That is, it is almost the same operation other than the source of the input bit to the 

operand. Rather than shifting the previous carry flag into the H.O. bit of the destination 

operation, ror shifts bit zero into the H.O. bit (see Figure 6.11). 

Segment Over Ride Prefix 

SOP is used when a particular offset register is not used with its default base segment register, but with a 

different base register. This is a byte put before the OPCODE byte. 

0 0 1 S R 1 1 0 

 

SR Segment Register 

00 ES 

01 CS 

10 SS 

11 DS 

 

 

Here SR is the new base register. To use DS as the new register 3EH should be prefix. 

Operand Register Default With over ride prefix 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 71 
 

IP (Code address) CS Never 

SP(Stack address) SS Never 

BP(Stack Address) SS BP+DS or ES or CS 

SI or DI(not including Strings) DS ES, SS or CS 

SI (Implicit source Address for 

strings) 

DS ” 

DI (Implicit Destination 

Address for strings) 

ES Never 

 

Examples: MOV AX, DS: [BP], LODS ES: DATA1 

S4 S3 Indications 

0 0 Alternate data 

0 1 Stack 

1 0 Code or none 

1 1 Data 

 

Bus High Enable / Status 

BHE  A0 Indications 

0 0 Whole word 

0 1 Upper byte from or to odd address 

1 0 Lower byte from or to even address 

1 1 none 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 72 
 

Segmentation: 

 

The 8086 microprocessor has 20 bit address pins. These are capable of addressing 220 = 1Mega 

Byte memory. To generate this 20 bit physical address from 2 sixteen bit registers, the following 

procedure is adopted. The 20 bit address is generated from two 16-bit registers. The first 16-bit 

register is called the segment base register. These are code segment registers to hold programs, 

data segment register to keep data, stack segment register for stack operations and extra segment 

register to keep strings of data. The contents of the segment registers are shifted left four times 

with zeroes (0‟s) filling on the right hand side. This is similar to multiplying four hex numbers 

by the base 16. This multiplication process takes place in the adder and thus a 20 bit number is 

generated. This is called the base address. To this a 16-bit offset is added to generate the 20-bit 

physical address. 

Segmentation helps in the following way. The program is stored in code segment area. The data 

is stored in data segment area. In many cases the program is optimized and kept unaltered for the 

specific application. Normally the data is variable. So in order to test the program with a 

different set of data, one need not change the program but only have to alter the data. Same is the 

case with stack and extra segments also, which are only different type of data storage facilities. 

Generally, the program does not know the exact physical address of an instruction. The 

assembler, a software which converts the Assembly Language Program (MOV, ADD etc.) into 

machine code (3EH, 4CH etc) takes care of address generation and location. 

DIRECTIVES AND OPERATOR 

 Assembler: is a program that accepts an assembly language program as input and 

converts it into an object module and prepares for loading the program into memory for 

execution. 

 Loader (linker) further converts the object module prepared by the assembler into 

executable form, by linking it with other object modules and library modules. 

 The final executable map of the assembly language program is prepared by the loader at 

the time of loading into the primary memory for actual execution. 

 The assembler prepares the relocation and linkages information (subroutine, ISR) for 

loader. 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 73 
 

 The operating system that actually has the control of the memory, which is to be allotted 

to the program for execution, passes the memory address at which the program is to be 

loaded for execution and the map of the available memory to the loader. 

 Based on this information and the information generated by the assembler, the loader 

generates an executable map of the program and further physically loads it into the 

memory and transfers control to for execution. 

 Thus the basic task of an assembler is to generate the object module and prepare the 

loading and linking information. 

Procedure for assembling a program 

 Assembling a program proceeds statement by statement sequentially. 

 The first phase of assembling is to analyze the program to be converted. This phase is 

called Pass1 defines and records the symbols, pseudo operands and directives. It also 

analyses the segments used by the program types and labels and their memory 

requirements.  

 The second phase looks for the addresses and data assigned to the labels. It also finds out 

codes of the instructions from the instruction machine, code database and the program 

data. 

  It processes the pseudo operands and directives. 

 It is the task of the assembler designer to select the suitable strings for using them as 

directives, 

 pseudo operands or reserved words and decides syntax. 

 

Directives 

 

 Also called as pseudo operations that control the assembly process. 

 They indicate how an operand or section of a program to be processed by the assembler. 

 They generate and store information in the memory. 

 

Assembler Memory models 

 

 Each model defines the way that a program is stored in the memory system. 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 74 
 

 Tiny: data fits into one segment written in .COM format 

  Small: has two segments data and memory. 

  There are several other models too. 

 

Directive for string data in a memory segment 

 

  DB define byte 

 DW define word 

 DD define double word 

 DQ define 10 bytes 

 

Example 

 

Data1 DB 10H,11H,12H 

Data2 DW 1234H 

 SEGMENT: statement to indicate the start of the program and its symbolic name. 

Example 

Name SEGMENT 

Variable_name DB ……. 

Variable_name DW ……. 

 

Name ENDS 

Data SEGMENT 

Data1 DB ……. 

Data2 DW ……. 

Data ENDS 

Code SEGMENT 

START: MOV AX,BX 

… 

… 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 75 
 

… 

Code ENDS 

 

Similarly the stack segment is also declared. 

 

  For small models 

.DATA 

… 

… 

ENDS 

 

The ENDS directive indicates the end of the segment. 

 

 Memory is reserved for use in the future by using a ? as an operand for DB DW or DD 

directive. The assembler sets aside a location and does not initialize it to any specific 

value(usually stores a zero). The DUP (duplicate) directive creates an array and stores a 

zero. 

 Example 

Data1 DB 5 DUP(?) 

 This reserves 5 bytes of memory for a array data1 and initializes each location with 05H 

 

ALIGN: memory array is stored in word boundaries. 

 Example 

ALIGN 2 means storing from an even address 

 

The data XX is aligned to the even address. 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 76 
 

 ASSUME, EQU, ORG 

 ASSUME tells the assembler what names have been chosen for Code, Data Extra and 

Stack segments. Informs the assembler that the register CS is to be initialized with the 

address allotted by the loader to the label CODE and DS is similarly initialized with the 

address of label DATA. 

 Example 

ASSUME CS: Name of code segment 

ASSUME DS: Name of the data segment 

ASSUME CS: Code1, DS: Data1 

 EQU: Equates a numeric, ASCII(American Standard Code for Information 

Interchange) or label to another label. 

 Example 

Data SEGMENT 

Num1 EQU 50H 

Num2 EQU 66H 

Data ENDS 

Numeric value 50H and 66H are assigned to Num1 and Num2 

 ORG: Changes the starting offset address of the data in the data segment 

 Example 

ORG 100H 

100 data1 DB 10H 

it can be used for code too. 

 PROC & ENDP: indicate the start and end of the procedure. They require a label to 

indicate 

the name of the procedure. 

 NEAR: the procedure resides in the same code segment. (Local) 

 FAR: resides at any location in the memory. 

 Example 

Add PROC NEAR 

ADD AX,BX 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 77 
 

MOV CX,AX 

RET 

Add ENDP 

PROC directive stores the contents of the register in the stack. 

 EXTRN, PUBLIC informs the assembler that the names of procedures and labels 

declared after this directive have been already defined in some other assembly language 

modules. 

 Example 

If you want to call a Factorial procedure of Module1 from Module2 it must be declared as 

PUBLIC in Module1. 

 Example 

A sample for full segment definition 

Data SEGMENT 

Num1 DB 10H 

Num2 DB 20H 

Num3 EQU 30H 

Data ENDS 

ASSUME CS:Code,DS:Data 

Code SEGMENT 

START: MOV AX,Data 

MOV DS,AX 

MOV AX,Num1 

MOV CX,Num2 

   ADD AX,CX 

Code ENDS 

 Example 

A sample for small model 

. MODEL SMALL 

.Data 

Num1 DB 10H 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 78 
 

Num2 DB 20H 

Num3 EQU 30H 

.  Code 

HERE:MOV AX,@Data 

MOV DS,AX 

MOV AX,Num1 

MOV CX,Num2 

  ADD AX,CX 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 79 
 

 

UNIT-3: BYTE AND STRING MANIPUATON 

BYTE AND STRING MANIPULATION: String instructions, REP Prefix, Table 

translation,Number format conversions, Procedures, Macros, Programming using keyboard and 

video display, 

TEXT BOOKS: 

1. Microcomputer systems-The 8086 / 8088 Family – Y.C. Liu and G. A. Gibson, 2PHI       

-2003 

2. The Intel Microprocessor, Architecture, Programming and Interfacing-Barry B. 

Brey, 6e, Pearson Education / PHI, 2003 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 80 
 

 

UNIT-3: BYTE AND STRING MANIPUATON 

BYTE AND STRING MANIPULATION 

Strings and String Handling Instructions : 

The 8086 microprocessor is equipped with special instructions to handle string operations. By 

string we mean a series of data words or bytes that reside in consecutive memory locations. The 

string instructions of the 8086 permit a programmer to implement operations such as to move 

data from one block of memory to a block elsewhere in memory. A second type of operation that 

is easily performed is to scan a string and data elements stored in memory looking for a 

specificvalue. Other examples are to compare the elements and two strings together in order to 

determine whether they are the same or different. 

Move String : MOV SB, MOV SW: 

An element of the string specified by the source index (SI) register with respect to the current 

data segment (DS) register is moved to the location specified by the destination index (DI) 

register with respect to the current extra segment (ES) register. The move can be performed on a 

byte (MOV SB) or a word (MOV SW) of data. After the move is complete, the contents of both 

SI & DI are automatically incremented or decremented by 1 for a byte move and by 2 for a word 

move. Address pointers SI and DI increment or decrement depends on how the direction flag DF 

is set.  

Example : Block move program using the move string instruction 

 

MOV AX, DATA SEG ADDR 

MOV DS, AX 

MOV ES, AX 

MOV SI, BLK 1 ADDR 

MOV DI, BLK 2 ADDR 

MOV CK, N 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 81 
 

CDF ; DF=0 

NEXT : MOV SB 

LOOP NEXT 

HLT 

Load and store strings : (LOD SB/LOD SW and STO SB/STO SW) 

LOD SB: Loads a byte from a string in memory into AL. The address in SI is used relative to DS 

to determine the address of the memory location of the string element. 

(AL) <= [(DS) + (SI)] 

(SI) <= (SI) + 1 

LOD SW : The word string element at the physical address derived from DS and SI is to be 

loaded into AX. SI is automatically incremented by 2. 

(AX) <= [(DS) + (SI)] 

(SI) <= (SI) + 2 

STO SB : Stores a byte from AL into a string location in memory. This time the contents of ES 

and DI are used to form the address of the storage location in memory 

[(ES) + (DI)] <= (AL) 

(DI) <=(DI) + 1 

STO SW : [(ES) + (DI)] <= (AX) 

(DI) <= (DI) + 2 

 

 

 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 82 
 

Mnemonic Meaning Format Operation Flags affected 

MOV SB 

Move 

String 

Byte 

MOV 

SB 

((ES)+(DI))((DS)+(SI)) 

(SI)(SI)  1 

(DI)   1 

None 

MOV SW 

Move 

String 

Word 

MOV 

SW 

((ES)+(DI))((DS)+(SI)) 

((ES)+(DI)+1)(DS)+(SI)+1) 

(SI)  (SI)  2 

(DI)  (DI)  2 

None 

LOD SB / 

LOD SW 

Load 

String 

LOD 

SB/ 

LOD 

SW 

(AL) or (AX) ((DS)+(SI)) 

(SI)(SI)  1 or 2 
None 

STOSB/ 

STOSW 

Store 

String 

STOSB/ 

STOSW 

((ES)+(DI))(AL) or (AX) 

(DI)  (DI) 71 or 2 
None 

 

Example : Clearing a block of memory with a STOSB operation. 

MOV AX, 0 

MOV DS, AX 

MOV ES, AX 

MOV DI, A000 

MOV CX, OF 

CDF 

AGAIN : STO SB 

LOOP NE AGAIN 

NEXT : Clear A000 to A00F to 0016 

 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 83 
 

Repeat String : REP 

The basic string operations must be repeated to process arrays of data. This is done by inserting a 

repeat prefix before the instruction that is to be repeated. Prefix REP causes the basic string 

operation to be repeated until the contents of register CX become equal to zero. Each time the 

instruction is executed, it causes CX to be tested for zero, if CX is found to be nonzero it is 

decremented by 1 and the basic string operation is repeated. 

Example : Clearing a block of memory by repeating STOSB 

MOV AX, 0 

MOV ES, AX 

MOV DI, A000 

MOV CX, OF 

CDF 

REP STOSB 

NEXT: 

The prefixes REPE and REPZ stand for same function. They are meant for use with the CMPS 

and SCAS instructions. With REPE/REPZ the basic compare or scan operation can be repeated 

as long as both the contents of CX are not equal to zero and zero flag is 1. 

REPNE and REPNZ works similarly to REPE/REPZ except that now the operation is repeated as 

ring 

elements are unequal (ZF=0) and the end of the string is not yet found (CX=0). 

Prefix Used with Meaning 

REP 
MOVS 

STOS 

Repeat while not end of 

string CX0 

REPE/ REPZ 
CMPS 

SCAS 
CX0 & ZF=1 

REPNE/REPNZ 
CMPS 

SCAS 
CX0 & ZF=0 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 84 
 

 

 

Example : CLD ; DF =0 

MOV AX, DATA SEGMENT ADDR 

MOV DS, AX 

MOV AX, EXTRA SEGMENT ADDR 

MOV ES, AX 

MOV CX, 20 

MOV SI, OFFSET MASTER 

MOV DI, OFFSET COPY 

REP MOVSB 

Moves a block of 32 consecutive bytes from the block of memory locations starting at offset 

address MASTER with respect to the current data segment (DS) to a block of locations starting 

at offset address copy with respect to the current extra segment (ES). 

Auto Indexing for String Instructions : 

SI & DI addresses are either automatically incremented or decremented based on the setting of 

the direction flag DF. When CLD (Clear Direction Flag) is executed DF=0 permits auto 

increment by  

1.When STD (Set Direction Flag) is executed DF=1 permits auto decrement by 1. 

Mnemonic Meaning Format Operation Flags affected 

CLD Clear DF CLD (DF)  0 DF 

STD Set DF STD (DF)  1 DF 

 

1. LDS Instruction: 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 85 
 

LDS register, memory (Loads register and DS with words from memory) 

This instruction copies a word from two memory locations into the register specified in the 

instruction. It then copies a word from the next two memory locations into the DS register. LDS 

is useful for pointing SI and DS at the start of the string before using one of the string 

instructions. LDS affects no flags. 

Example 1 :LDS BX [1234] 

Copy contents of memory at displacement 1234 in DS to BL. Contents of 1235H to BH. Copy 

contents at displacement of 1236H and 1237H is DS to DS register. 

Example 2 : LDS, SI String – Pointer 

(SI) = [String Pointer] 

(DS) = [String Pointer +2] 

DS, SI now points at start and desired string 

2. LEA Instruction : 

Load Effective Address (LEA register, source) 

This instruction determines the offset of the variable or memory location named as the source 

and puts this offset in the indicated 16 bit register. LEA will not affect the flags. 

Examples : 

LEA BX, PRICES 

Load BX with offset and PRICES in DS 

LEA BP, SS : STACK TOP 

Load BP with offset of stack-top in SS 

LEA CX, [BX] [DI] 

Loads CX with EA : (BX) + (DI) 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 86 
 

3. LES instruction : 

LES register, memory 

Example 1: LES BX, [789A H] 

(BX) <= [789A] in DS 

(ES) <= [789C] in DS 

Example 2 : LES DI, [BX] 

(DI) <= [BX] in DS 

(ES) <=[BX+2] in DS 

Macros 

 Macros provide several powerful mechanisms useful for the development of generic 

programs. 

 A Macro is a group of instructions with a name. When a macro is invoked, the associated 

set of instructions is inserted in place in to the source, replacing the macro name. This 

“macro expansion” is done by a Macro Preprocessor and it happens before assembly. 

Thus the actual Assembler sees the “expanded” source! 

  We could consider the macro as shorthand for a piece of text; somewhat like a new 

pseudocode instruction. 

Macros and Procedures: 

 Macros are similar to procedures in some respects, yet are quite different in many other 

respects. 

 Procedure: 

 Only one copy exists in memory. Thus memory consumed is less. “Called” when 

required; 

 Execution time overhead is present because of the call and return instructions. 

 Macro: 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 87 
 

 When a macro is “invoked”, the corresponding text is “inserted” in to the source. Thus 

multiple copies exist in the memory leading to greater space requirements. 

 However, there is no execution overhead because there are no additional call and return 

instructions. The code is in-place. These concepts are illustrated in the following figure: 

 

MACRO Definition: 

A macro has a name. The body of the macro is defined between a pair of directives, MACRO 

and ENDM. Two macros are defined in the example given below. 

Examples of Macro Definitions: 

; Definition of a Macro named PA2C 

PA2C MACRO 

PUSH AX 

PUSH BX 

PUSH CX 

ENDM 

; Another Macro named POPA2C is defined here 

POPA2C MACRO 

POP CX 

POP BX 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 88 
 

POP AX 

ENDM 

Examples of Macro usage: 

The following examples illustrate the use of macros. We first show the source with macro 

invocation and then show how the expanded source looks.  

Program with macro invocations: 

PA2C 

MOV CX, DA1 

MOV BX, DA2 

ADD AX, BX 

ADD AX, CX 

MOV DA2, AX 

POPA2C 

When the Macro Preprocessor expands the macros in the above source, the expanded source 

looks as shown below: 

PUSH AX 

PUSH BX 

PUSH CX 

MOV CX, DA1 

MOV BX, DA2 

ADD AX, BX 

ADD AX, CX 

MOV DA2, AX 

POP CX 

POP BX 

POP AX 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 89 
 

Note how the macro name is replaced by the associated set of instructions. Thus, macro name 

does not appear in the expanded source code. In other words, the actual Assembler does not 

“see” the macros. What gets assembled is the expanded source. This process is illustrated in the 

following figure: 

 

 

 

MACROS with Parameters: 

Macros have several other interesting and powerful capabilities. One of these is the definition 

and use of macros with parameters. A macro can be defined with parameters. These are dummy 

parameters. When the macro is invoked, we provide the actual parameters. During the macro 

expansion, the dummy parameters are replaced by the corresponding actual parameters. The 

association between the dummy and actual parameters is positional. Thus the first actual 

parameter is associated with the first dummy parameter, the second actual parameter with the 

second dummy one and so on. This is illustrated in the following example where a Macro named 

COPY is defined with two parameters called A and B. 

Example: 

COPY MACRO A , B 

PUSH AX 

MOV AX, B 

MOV A, AX 

POP AX 

ENDM 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 90 
 

The macro is invoked in the following code with actual parameters as VAR1 and VAR2. Thus 

during the macro expansion, the parameter A is replaced by VAR1 and the parameter B is 

replaced by VAR2. 

COPY VAR1, VAR2 

The expanded code is: 

PUSH AX 

MOV AX, VAR2 

MOV VAR1, AX 

POP AX 

Local Variables in a Macro: 

• Assume that a macro definition includes a label RD1 as in the following example: 

READMACRO A 

PUSH DX 

RD1: MOV AH, 06 

MOV DL, 0FFH 

INT 21H 

JE RD1 ;; No key, try again 

MOV A, AL 

POP DX 

ENDM 

If READ macro is invoked more than once, as in 

READVAR1 

READ VAR2 

assembly error results! 

• The problem is that the label RD1 appears in the expansion of READ VAR1 as well as in the 

expansion of READ VAR2. Hence, the label RD1 appears in both the expansions. In other 

words, the Assembler sees the label RD1 at two different places and this results in the “Multiple 

Definition” error! 

• SOLUTION: Define RD1 as a local variable in the macro. 

READMACRO A 

LOCAL RD1 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 91 
 

PUSH DX 

RD1: MOV AH, 06 

MOV DL, 0FFH 

INT 21H 

JE RD1 ;; No key, try again 

MOV A, AL 

POP DX 

ENDM 

• Now, in each invocation of READ, the label RD1 will be replaced, automatically, with a 

unique label of the form ??xxxx ; where xxxx is a unique number generated by Assembler. This 

eliminates the problem of multiple definitions in the expanded source. 

• With the use of local variable as illustrated above, 

READ VAR1 

gets expanded as: 

PUSH DX 

??0000: MOV AH, 06 

MOV DL, 0FFH 

INT 21H 

JE ??0000 ;; No key, try again 

MOV VAR1, AL 

POP DX 

Subsequently, if we write 

READ VAR2 

it gets expanded as: 

PUSH DX 

??0001: MOV AH, 06 

MOV DL, 0FFH 

INT 21H 

JE ??0001 ;; No key, try again 

MOV VAR2, AL 

POP DX 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 92 
 

Note how each invocation of the READ macro gets expanded with a new and unique label, 

generated automatically by the Assembler, in place of the local variable RD1. Further, note that 

LOCAL directive must immediately follow the MACRO directive. Another feature to note is that 

Comments in Macros are preceded by ;; (two semicolons) , and not as usual by ; (a single 

semicolon). 

File of Macros: 

• We can place all the required Macros in a file of its own and then include the file into the 

source. 

• Example: Suppose the Macros are placed in D:\MYAPP\MYMAC.MAC 

In the source file, we write 

Advanced Features: 

• Conditional Assembly 

• REPEAT , WHILE, and FOR statements in MACROS 

Conditional Assembly: 

• A set of statements enclosed by IF and ENDIF are assembled if the condition stated with 

IF is true; otherwise, the statements are not assembled; no code is generated. 

• This is an Assembly time feature; not run-time behavior! 

• Allows development of generic programs. From such a generic program, we can produce 

specific source programs for specific application contexts. 

• Example: Assume that our generic program has the following statements: 

IF WIDT 

WIDE DB 72 

ELSE 

WIDE DB 80 

ENDIF 

Now the assembly language program that is generated depends on the value of WIDT. 

Assume the block is preceded by 

WIDT EQU 1 

Then the assembled code is: 

WIDE DB 72 

It is important to note that the Assembler sees a source file that has only the above 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 93 
 

statement. 

 Another case: 

WIDT EQU 0 

IF WIDT 

WIDE DB 72 

ELSE 

WIDE DB 80 

ENDIF 

What gets assembled is: WIDE DB 80 

 There are several other directives that can be used for Conditional Assembly as listed 

below: 

IF If the expression is true 

IFB If the argument is blank 

IFNB If the argument is not blank 

IFDEF If the label has been defined 

IFNDEF If the label has not been defined 

IFIDN If argument 1 equals argument 2 

IFDIF If argument 1 does not equal argument 2 

With each of the above constructs, the code that follows gets assembled only if the stated 

condition is true. 

REPEAT Statement: 

This statement allows a block of code to be repeated the specified number of times. This avoids 

repetitive typing and is much more elegant than Editor-level Copy-and-Paste operation. 

Example: 

REPEAT 3 

INT 21H 

INC DL 

ENDM 

The generated code would be 3 repetitions of the block of 2 statements enclosed within 

REPEAT and ENDM as shown below: 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 94 
 

INT 21H 

INC DL 

INT 21H 

INC DL 

INT 21H 

INC DL 

WHILE Statement: 

This statement allows a block of code to be repeated while the condition specified with the 

WHILE is true. 

Example: Consider the following code 

SQ LABEL BYTE 

SEED = 1 

RES = SEED * SEED 

WHILE RES LE 9 

DB RES 

SEED = SEED + 1 

RES = SEED * SEED 

ENDM 

Note that SEED and the arithmetic statements involving SEED and RES are all Assembly time 

actions. Apart from the initial label SQ, the only statement to actually get repeated is DB RES. 

The logic is follows: Initially the label SQ is generated. SEED is initialized to 1 and RES is 

computed as 1 * 1 = 1. Now RES LE 9 is true as the value of RES is 1 which is less than 9. So 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 95 
 

the code DB 1 is generated. The next statement within the scope of WHILE, “SEED = SEED + 

1” is executed making SEED assume the value of 2. The next statement within the scope of 

WHILE is RES = SEED * SEED. This is also executed and RES assumes the value of 4. This 

completes one pass of execution of the WHILE block. So, the condition associated with WHILE 

is again evaluated. This is again TRUE as 4 is less than 9. So again DB 9 is generated. Reasoning 

as before, we see that DB 9 is also generated. However, in the next pass SEED is 4 and RES is 

16. So the condition RES LE 9 evaluates to FALSE and WHILE loop is exited! 

Thus the generated code is: 

SQ DB 01 

DB 04 

DB 09 

FOR Statement: 

This is very similar to the FOR of languages like PERL. With the FOR statement, a control 

variable and a list of values are specified. The control variable is successively assigned values 

from the specified list and for each such value, the following block of statements is repeated. 

Example: 

DISP MACRO CHR:VARARG 

MOV AH, 2 

FOR ARG, <CHR> 

MOV DL, ARG 

INT 21H 

ENDM 

ENDM 

The outer Macro has one parameter which is specified as sequence of characters of variable 

length. The inner FOR statement has two enclosed statements which will be repeated for each 

value in the list <CHR>. Thus in the following illustration, DISP is invoked with 3 characters as 

parameters. The two statements within FOR scope are thus repeated 3 times with ARG 

successively assuming the 3 characters. 

Thus, the statement 

DISP „V‟,‟T‟,‟U‟ 

gets expanded as 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 96 
 

MOV AH, 2 

MOV DL,‟V‟ 

INT 21H 

MOV DL, ‟T‟ 

INT 21H 

MOV DL, ‟U‟ 

INT 21H 

NUMBER FORMAT CONVERSION: 

• Often Data available in one format needs to be converted in to some other format. 

Examples: 

 ASCII to Binary 

 Binary to ASCII 

 BCD to 7-Segment Code … … … 

• Data Conversion may be based on 

 Algorithm 

 Look –Up Table 

Converting from Binary to ASCII: 

In many contexts, for example, when displaying a number on the screen, we must produce a 

sequence of ASCII characters representing the number to be displayed. Thus the given number 

must be converted to a string of equivalent ASCII characters. 

• Example: Binary number: 0100 0011 = 43H = 67 D 

To display this on the screen, we need to convert this binary number in to Two ASCII 

characters, „6‟ and „7‟. 

ASCII code for character „6‟ is 36H and ASCII code for character „7‟ is 37H. 

So, we need to produce 36H and 37H as output given 43H as input. 

• Another Example: Binary number: 0000 0010 0100 0011 = 0243H = 579 D 

To display this on the screen, we need Three ASCII characters, „5‟, „7‟ and „9‟. 

ASCII code for character „5‟ is 35H, 

ASCII code for character „7‟ is 37H, and 

ASCII code for character „9‟ is 39H 

So, we need to produce 35H, 37H and 39H as output given 0243H as input 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 97 
 

Binary to ASCII Algorithm: 

Example: Binary number: 0000 0010 0100 0011 = 579 D 

• Divide 579 by 10 ; Quotient = 57 ; Remainder = 9 , Save 9 

• Divide 57 by 10; Quotient = 5 ; Remainder = 7 , Save 7 

• Divide 5 by 10; Quotient = 0 ; Remainder = 5 , Save 5 

Quotient = 0 -> Conversion Complete. 

• Remainders saved in the order of 9, 7, and 5. 

• Retrieve remainders in the order of 5, 7, and 9. 

(As the order of retrieval is the reverse of the order of producing these digits, the most 

convenient technique is to Save & Retrieve the digits using Stack) 

• While retrieving, add 30H to convert the digit to ASCII code and then display it (or print it, or 

save it…) 

• Thus the algorithm is: 

While the number is not equal to 0 

Divide the number by 10; 

Push the remainder digit on the stack; 

Set number <- quotient 

While stack not empty 

Pop a digit from the stack 

Add 30H to convert it to ASCII and display it 

Return. 

 This algorithm is implemented in the following program: 

Binary to ASCII Program: 

; Input : 16-Bit Binary Number in AX 

; Output: Equivalent ASCII displayed on screen 

.MODEL TINY 

.CODE 

.STARTUP 

MOV AX, 2A5H ; Test value 

CALL B2A ; Binary to ASCII and Display 

.EXIT 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 98 
 

B2A PROC NEAR 

PUSH DX 

PUSH CX 

PUSH BX 

MOV CX, 0 ; Count of ASCII digits, Initialized to 0 

MOV BX, 10 ; Divisor is 10 

B2A1: MOV DX, 0 ; Dividend in DX, AX. So set DX = 0 

DIV BX ; Divide by 10 

PUSH DX ; Save remainder digit on the stack 

INC CX ; Increment digit count 

OR AX, AX ; Conversion completed ? (Quotient, i.e AX = 0 ?) 

JNZ B2A1 ; No, continue division 

; Conversion is complete as quotient in AX = 0 

; Count of remainder digits is in CX 

B2A2: POP DX ; Retrieve remainder in DL 

ADD DL, 30H ; Convert to ASCII 

MOV AH, 06H ; Console Display Function 

INT 21H ; DOS Service, display digit 

LOOP B2A2 ; Repeat for all digits 

; Clean up & Return. AX is destroyed 

POP BX 

POP CX 

POP DX 

RET 

B2A ENDP 

END 

Another Method for Binary to ASCII Conversion: 

• When the input number is less than 100, an alternative, simpler method exists. 

• AAM (ASCII Adjust AX After Multiplication) instruction converts value in AX in to 2- 

Digit Unpacked BCD and leaves it in AX. 

• Example: AX = 0027H (39 Decimal) 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 99 
 

Execute AAM ; Now, AX = 0309H ; This is Unpacked BCD. 

• Now, add 3030H to AX to get 3339H ; This is Packed ASCII representation. 

• Separate the two bytes (unpack) to get the two ASCII characters representing the given 

number (33H and 39H). 

• Works only when the number is less than 100 as the maximum unpacked BCD that we can 

have in the AX register is 0909H only. 

• The following program is developed based on this idea. 

; Input : Binary Number in AL, Assumed <100 

; Output: Equivalent ASCII displayed on screen 

.MODEL TINY 

.CODE 

.STARTUP 

MOV AL, 2AH ; Test value 

CALL B2A ; Binary to ASCII and Display 

.EXIT 

B2A PROC NEAR 

PUSH DX 

MOV AH, 0 ; AX = Number 

AAM ; AX = Unpacked BCD 

ADD AX, 3030H ; Convert to ASCII 

PUSH AX 

; Now, unpack and display 

MOV DL, AH ; First Digit 

MOV AH, 06H ; Display Function 

INT 21H ; Display first digit 

POP AX ; Retrieve value 

MOV DL, AL ; Second Digit 

MOV AH, 06H ; Display Function 

INT 21H ; Display second digit 

; Clean up & Return. AX is destroyed 

POP DX 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 100 
 

RET 

B2A ENDP 

END 

Refinements: 

• Suppose the input is: AL = 7H. What is displayed is 07 

• Can we replace leading 0 with a blank so that the display looks better? Thus, instead of 07, the 

display should be 7. 

• Yes. We need to check if the first digit is 0. If so, display 20H (blank); else, display the digit. 

 We need to modify the previous program to incorporate this check for a leading 0. 

 Old Code for displaying first digit: 

MOV DL, AH ; First Digit 

MOV AH, 06H ; Display Function 

INT 21H ; Display first digit 

 

 Revised Code for displaying first digit: 

ADD AH, 20H 

CMP AH, 20H ; First Digit = 0? 

JZ B2A1 ; Display blank (ASCII Code is 20H) 

ADD AH, 10H ; Add 10H more to get the correct ASCII Code for the digit 

B2A1: MOV DL , AH ; First Digit 

MOV AH , 06H ; Display Function 

INT 21H ; Display first digit 

  Incorporating this change, the program will be as shown below: 

; Input : Binary Number in AL, Assumed <100 

; Output: Equivalent ASCII displayed on screen 

.MODEL TINY 

.CODE 

.STARTUP 

MOV AL, 2AH ; Test value 

CALL B2A ; Binary to ASCII and Display 

.EXIT 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 101 
 

B2A PROC NEAR 

PUSH DX 

MOV AH, 0 ; AX = Number 

AAM ; AX = Unpacked BCD 

ADD AX, 3030H ; Convert to ASCII 

PUSH AX 

; Now, unpack and display 

ADD AH, 20H 

CMP AH, 20H ; First Digit = 0? 

JZ B2A1 ; YES. So, display a blank (ASCII Code is 20H) 

ADD AH, 10H ; No, we have already added 20H. Add 10H more 

B2A1: MOV DL, AH ; First Digit itself if not 0 , Or Blank (if 0) 

MOV AH, 06H ; Display Function 

INT 21H ; Display first digit 

POP AX ; Retrieve value 

MOV DL, AL ; Second Digit 

MOV AH, 06H ; Display Function 

INT 21H ; Display second digit 

; Clean up & Return. AX is destroyed 

POP DX 

RET 

B2A ENDP 

END 

ASCII to Binary Algorithm: 

In many contexts, for example, when reading a number from the key board, we get a sequence of 

ASCII characters representing the number. This string of ASCII characters must be converted to 

the equivalent number for further processing. 

Example: Assume that ASCII character sequence „156‟ is the input. 

• 3 characters, „1‟, „5‟, and „6‟; with codes as 31H, 35H, and 36H. 

• Converted Binary Value must be: 

0000 0000 1001 1100 = 009CH = 156 (decimal) 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 102 
 

Conversion Procedure: 

• Start with (Binary) Result = 0 

• First ASCII digit 31H; Subtract 30H to get corresponding BCD digit 01H. 

• Result = Result * 10 + Next BCD Digit 

Result = 0 * 10 + 01 = 0000 0000 0000 0001 

• Next ASCII digit 35H; Subtract 30H to get corresponding BCD digit 05H. 

• Result = Result * 10 + Next BCD Digit 

Result = 01 * 10 + 05 = 0000 0000 0000 1111 

• Next ASCII digit 36H; Subtract 30H to get corresponding BCD digit 06H. 

• Result = Result * 10 + Next BCD Digit 

Result = 15 * 10 + 06 = 0000 0000 1001 1100 

• ASCII digits exhausted. So, conversion is completed. 

• Final Result = 0000 0000 1001 1100 = 009CH = 156 (decimal) 

• Based on the above ideas, the following program implements the ASCII to Binary 

Conversion. 

; ASCII to Binary Program 

; ASCII characters representing a number are read from key board. 

; The first non-digit character (any character other than 0 through 9) typed 

; signals the end of the number entry 

; Result returned in AX, which is then stored in memory location TEMP. 

; Result assumed not to exceed 16 bits! 

; Program can be modified to accept larger numbers by implementing 

; 32- bit addition. 

.MODEL SMALL 

.DATA 

TEMP DW ? 

.CODE 

.STARTUP 

CALL RDNUM 

MOV TEMP, AX 

.EXIT 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 103 
 

RDNUM PROCNEAR 

PUSH BX 

PUSH CX 

MOV CX, 10 ; Multiplier is 10 

MOV BX, 0 ; Result initialized to 0 

RDN1: MOV AH, 1 ; Read Key with Echo 

INT 21H 

; Check the character. If less than „0‟ or greater than „9‟ Number entry is over 

CMP AL, ‟0‟ 

JB RDN2 

CMP AL,‟9‟ 

JA RDN2 

; Is digit. Update Result 

SUB AL, 30H ; BCD Digit 

PUSH AX 

MOV AX, BX 

MUL CX 

MOV BX, AX ; Result = Result * 10 

POP AX 

MOV AH, 0 ; AX = Current Digit 

ADD BX, AX ; Update Result 

JMP RDN1 ; Repeat 

; Non- digit. Clean Up and Return 

RDN2: MOV AX, BX ; Result in AX 

POP CX 

POP BX 

RET 

RDNUM ENDP 

END 

Notes: 

 The constant multiplier 10 is held in the register CX. 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 104 
 

 In the procedure, RDNUM, the result is accumulated in the register BX and at the end, it 

is moved in to register AX. The result in AX is moved, in the calling program, in to the 

memory location TEMP. 

 The BCD digit is in AL. AH is cleared to 0 so that the 16-bit value in AX represents the 

correct value and thus can be added directly to the accumulating result in BX. This part 

of the code must be changed to implement 32-bit addition if larger results are to be 

supported. 

 Using Look – Up Tables for Data Conversion: 

 Often, a look-up table simplifies data conversion. 

 XLAT can be used if table has up to 256 byte-entries 

 Value to be converted is used to index in to the table containing conversion values. 

 As an example, we will demonstrate BCD to 7-Segment code conversion. 

BCD to 7-Segment Code Conversion:  

In many applications, we need to display BCD values on a 7-Segment display. The 7-Segment 

display device, as the name suggests, has 7 segments which can be independently controlled to 

be ON or OFF. Further, the device has a decimal point also that can be switched ON or OFF. The 

7 segments and the decimal point are controlled by 8 bits, with one bit controlling one segment 

or the decimal point. The bit value required to switch on a segment depends on whether the 

device is of a Common – Anode type or Common – Cathode type. Here, we are assuming a 

Common – Anode type. Thus the segment will be ON if the corresponding controlling bit is 1 

and will be off if the bit is 0. 

 

Based on the digit to be displayed, we must determine the segments that must be ON and the 

ones that must be OFF. The bits controlling the segments that must be ON are set to 1 and the 

bits controlling the segments that must be OFF are cleared to 0. The resulting bit pattern 

determines the value of the 7-Segemnt code that must be output. This display structure is shown 

in the following figure on the next page: 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 105 
 

 

As an example of determining the display code corresponding to a given BCD digit, the 

following figure shows the display of digit 3 and the determination of the corresponding 7- 

Segment code: 

 

Based on the above logic, the following FAR Procedure returns the 7-Segment code in the AL 

register, corresponding to the BCD digit provided as input parameter in the AL register before 

calling the procedure. 

; BCD to 7-Segment Code Program 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 106 
 

; Input: AL = BCD Digit 

; Output: AL = 7-Segment code. 

BT7SEG PROCFAR 

PUSH BX 

MOV BX, OFFSET TABLE 

XLAT CS: TABLE 

POP BX 

RET 

TABLE DB 3FH ; 0 

DB 06H ; 1 

DB 5BH ; 2 

DB 4FH ; 3 

DB 66H ; 4 

DB 6DH ; 5 

DB 7DH ; 6 

DB 07H ; 7 

DB 7FH ; 8 

DB 6FH ; 9 

BT7SEG ENDP 

Notes: 

• XLAT instruction does not normally contain an operand. Here we are using the operand 

(TABLE). It is a dummy operand! It is being used here only to specify segment override. 

XLAT uses DS by default. Here the table is in CS. So segment override is being specified. 

• More examples are discussed in the Text Book. 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 107 
 

 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 108 
 

 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 109 
 

 

 

 

 

 

 

 

 

 

 

 

 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 110 
 

 

UNIT – 4  

8086 INTERRUPTS: 8086 Interrupts and interrupt responses, Hardware interrupt applications, 

Software interrupt applications, Interrupt examples 

 

TEXT BOOKS: 

 

1. Microcomputer systems-The 8086 / 8088 Family – Y.C. Liu and G. A. Gibson, 2E PHI 

-2003  

2. The Intel Microprocessor, Architecture, Programming and Interfacing-Barry B. 

Brey, 6e, Pearson Education / PHI, 2003  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 111 
 

 

UNIT – 4  

8086 INTERRUPTS 

8086 INTERRUPTS: 8086 Interrupts and interrupt responses, Hardware interrupt applications, 

Software interrupt applications, Interrupt examples 

What is an interrupt ? 

An interrupt is the method of accessing the MPU by a peripheral device. An interrupt is used to 

cause a temporary halt in the execution of a program. The MPU responds to the interrupt with an 

interrupt service routine, which is a short program or subroutine that instructs the MPU on how 

to handle the interrupt. When the 8086 is executing a program, it can get interrupted because of 

one of the following. 

1.Due to an interrupt getting activated. This is called as hardware interrupt .  

2.Due to an exceptional happening during an instruction execution, such as division of a number 

by zero. This is generally termed as exceptions or Traps. 

3.Due to the execution of an Interrupt instruction like "INT 21H". This is called a Software 

interrupt. The action taken by the 8086 is similar for all the three cases, except for minor 

differences. There are two basic types of interrupts, Maskable and non-maskable.  

Nonmaskable interrupt requires an immediate response by the MPU. It is usually used for serious 

circumstances like power failure. A maskable interrupt is an interrupt that theMPU can ignore 

depending upon some predetermined condition defined by the status register. Interrupts are also 

prioritized to allow for the case when more than one interrupt needs to be serviced at the same 

time. 

Hardware interrupts of 8086 

In a microcomputer system whenever an I/O port wants to communicate with the microprocessor 

urgently, it interrupts the microprocessor. In such a case, the microprocessor completes the 

instruction it is presently executing. Then, it saves the address of the next instruction on the stack 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 112 
 

top. Then it branches to an Interrupt Service Subroutine (ISS), to service the interrupting I/O 

port. An ISS is also commonly called as an Interrupt Handler . After completing the ISS, the 

processor returns to the original program, making use of the return address that was saved on the 

stack top.In 8086 there are two interrupt pins. They are NMI and INTR. NMI stands for non 

maskable interrupt. Whenever an external device activates this pin, themicroprocessor will be 

interrupted. This signal cannot be masked. NMI is a vectored Definition: The meaning of 

„interrupts‟ is to break the sequence of operation.While the cpu is executing a program,on 

„interrupt‟ breaks the normal sequence of execution of instructions, diverts its execution to some 

other program called Interrupt Service Routine (ISR).After executing ISR , the control is 

transferred back again to the main program.Interrupt processing is an alternative to polling. 

Need for Interrupt: Interrupts are particularly useful when interfacing I/O devices, that provide or 

require data at relatively low data transfer rate. 

Types of Interrupts: There are two types of Interrupts in 8086. They are: 

(i)Hardware Interrupts and 

(ii)Software Interrupts 

(i) Hardware Interrupts (External Interrupts). The Intel microprocessors support hardware 

interrupts through: 

 Two pins that allow interrupt requests, INTR and NMI 

 One pin that acknowledges, INTA, the interrupt requested on INTR.  

INTR and NMI 

 INTR is a maskable hardware interrupt. The interrupt can be enabled/disabled using 

STI/CLI instructions or using more complicated method of updating the FLAGS register 

with the help of the POPF instruction. 

 When an interrupt occurs, the processor stores FLAGS register into stack, disables 

further interrupts, fetches from the bus one byte representing interrupt type, and jumps to 

interrupt processing routine address of which is stored in location 4 * <interrupt type>. 

Interrupt processing routine should return with the IRET instruction. 

 NMI is a non-maskable interrupt. Interrupt is processed in the same way as the INTR 

interrupt. Interrupt type of the NMI is 2, i.e. the address of the NMI processing routine is 

stored in location 0008h. This interrupt has higher priority than the maskable interrupt. 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 113 
 

– Ex: NMI, INTR. 

(ii) Software Interrupts (Internal Interrupts and Instructions) .Software interrupts can 

be caused by: 

 INT instruction - breakpoint interrupt. This is a type 3 interrupt. 

 INT <interrupt number> instruction - any one interrupt from available 256 

interrupts. 

 INTO instruction - interrupt on overflow 

 Single-step interrupt - generated if the TF flag is set. This is a type 1 interrupt. 

When the CPU processes this interrupt it clears TF flag before calling theinterrupt 

processing routine. 

  Processor exceptions: Divide Error (Type 0), Unused Opcode (type 6) and Escape 

opcode (type 7). 

  Software interrupt processing is the same as for the hardware interrupts. 

  - Ex: INT n (Software Instructions) 

  Control is provided through: 

  IF and TF flag bits 

  IRET and IRETD 

 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 114 
 

 

 

 

 

 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 115 
 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 116 
 

 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 117 
 

 

 

 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 118 
 

 

 

 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 119 
 

 

 

 

 

 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 120 
 

 

UNIT – 5 (7 Hours) 

8086 INTERFACING: Interfacing microprocessor to keyboard (keyboard types, 

keyboard circuit connections and interfacing, software keyboard interfacing, keyboard 

interfacing with hardware), Interfacing to alphanumeric displays (interfacing LED displays to 

microcomputer), Interfacing a microcomputer to a stepper motor. 

 

TEXT BOOKS: 

 

1. Microcomputer systems-The 8086 / 8088 Family – Y.C. Liu and G. A. Gibson, 2E PHI 

-2003  

2. The Intel Microprocessor, Architecture, Programming and Interfacing-Barry B. 

Brey, 6e, Pearson Education / PHI, 2003  

 

  



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 121 
 

UNIT – 5  

8086 INTERFACING 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 122 
 

 

 

 

 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 123 
 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 124 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 125 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 126 
 

UNIT - 6 (6 Hours) 

8086 BASED MULTIPROCESSING SYSTEMS: Coprocessor configurations, The 8087 

numeric data processor: data types, processor architecture, instruction set and examples 

 

TEXT BOOKS: 

 

1. Microcomputer systems-The 8086 / 8088 Family – Y.C. Liu and G. A. Gibson, 2E PHI 

-2003  

2 The Intel Microprocessor, Architecture, Programming and Interfacing-Barry B. 

Brey, 6e, Pearson Education / PHI, 2003  

  



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 127 
 

UNIT: 6: 8086 BASED MULTIPROCESSSING SYSTEMS 

8087 Numeric Co-processor 

Need for a numeric co-processor 

The 8086 microprocessor is basically an integer processing unit and works directly on a variety 

of integer data types. Many programs used in engineering, science, business, need to perform 

mathematical operations like logarithms of a number, square root of a number, sine of an angle 

etc. It may also be needed to perform computations with very large numbers like 10
+56

, or very 

small numbers like 10
-67

. There are no instructions in 8086 to directly find sine of an angle etc. 

Also 8086 can only perform computations on 16 bit fixed point numbers, with a range of –32768 

to +32767. In other words, 8086 does not provide any intrinsic support for operations on floating 

point numbers. 

 

It is possible to perform any calculations using only 8086. But if speed becomes important, it is 

necessary to use the dedicated Numeric co-processor Intel 8087, to speed up the matters. It 

typically provides a 100 fold speed increase for floating point operations. A numeric co-

processor is also variously termed as arithmetic co-processor, math co-processor, numeric 

processor extension, numeric data processor, floating point processor etc. 

 

 

 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 128 
 

 

Description of 8087 pins 

 

INT: This is an active high output pin. The 8087 activates this pin whenever an exception occurs 

during 8087 instruction execution, provided the 8087 interrupt system is enabled and the relevant 

exceptions is not masked using the 8087 control register. 

The INT output of 8087 is connected directly to NMI or INTR input of 8086. Alternatively, INT 

output of 8087 is connected to an interrupt request input of 8259 Interrupt controller, which in 

turn interrupts the 8086 on its INTR input. 

 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12

1 13

1 14 

15 

16

1 17

1 18 

19 

20 
21

0 

22

0 

23

0 

24

0 

25

20 

26

0 

27

20 

28

0 

29

20 

30

29

20 

31

29

20 

32

29

20 

33

29

20 

34

29

20 

35

29

20 

36

29

20 

37

29

20 

38

29

20 

39

29

20 

40

29

20 

GND 

(A14) AD14 

(A13) AD13 

(A12) AD12 

(A11) AD11 

(A10) AD10 

(A9) AD9 

(A8) AD8 

AD7 

AD6 

AD5 

AD4 

AD3 

AD2 

AD1 

AD0 

NCM

I NC 

CLK 

GND 
RESET 

READY 

BUSY 

QS1 

QS0 
0S  
1S  
2S  

NC 

0GT/RQ

 NC 

INT 

7
/SBHE  

6/S19A

 

5/S18A

 

4/S17A

 

3/S16A

 

15AD

 

VCC 

8087 

1GT/RQ  



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 129 
 

BUSY: Let us say, the 8086 is used in maximum mode and is required to wait for some result 

from the co-processor 8087 before proceeding with the next instruction. Then we can make the 

8086 execute the WAIT instruction. Then the 8086 enters an idle state, where it is not 

performing any processing. The 8086 will stay in this idle state till TEST* input of 8086 is made 

0 by the co-processor, indicating that the co-processor has finished its computation. When the 

8087 is busy executing an arithmetic instruction, its BUSY output line will be in the 1 state. This 

pin is connected to TEST*pin of 8086. Thus when the BUSY pin is made 0 by the 8087 after the 

completion of execution of an arithmetic instruction, the 8086 will carry on with the next 

instruction after the WAIT instruction. 

Internal Structure of the 80X87 

Fig: The internal structure of the 80X87 arithmetic coprocessor 

 

Control register 

Status register 

Control Unit (CU) 

 

 

Data 

Buffer 

Bus tracking 

Exceptions 

Exponent 

Module 

Shifter 

Arithmetic 

Module 

Temporary 

registers 

Instruction 

Decoder 

Operand  

Queue 

T

a

g

 

r

e

g

i

s

t

e

r 

(7) 

(6) 

(5) 

(4) 

(3) 

(2) 

(1) 

(0) 

Numeric Execution Unit (NEU) 

Data 

Status 

Address 

80-bit wide stack 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 130 
 

Fig: The internal structure of the 80X87 arithmetic coprocessor 

8087 Data Types 

The 8087 always works on 80 bit data internally. This 80 bit floating point format is termed as 

Temporary Real format. However, it can read from memory a number, which is represented 

using any of the following data types. 

a. Signed integers of size 16, 32 or 64 bits 

b. 18 digit signed integer packed BCD number using 80 bits 

c. Floating point numbers using 32, 64, or 80 bits 

This number read from memory is internally converted to the 80 bit temporary real format before 

performing any computations. Similarly, the result is converted automatically by the 8087 to one 

of the formats mentioned above before storing it in memory.  

8087 Data Types: 

1. Integer Data Types 

(a) Word integer (16 Bit Signed Integer) 

S Magnitude 

15 0 

Sign bit is 0 for positive and 1 for negative. 

Range:      –32768<=X<=+32767. Negative number representation in 2‟s complement form. 

(b) Short integer (32 Bit Signed Integer) 

S Magnitude 

31 0 

Range:      –2 x 10
9
 <=X<= 2 x 10

9 

 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 131 
 

(c) Long Integer (64 Bit Signed Integer) 

S Magnitude 

63 0 

This is called binary integer.  Range:      –9 x 10
18

 <=X<= 9 x 10
18

 

2. Packed BCD type 

Packed Decimal (18 BCD digits) 

S Don‟t care Magnitude (BCD) 

79 72 71  

           0 

-99… … 99<=X<=+99… …99(18 digits) 

3. 32 Bit Short real 

Short real (Single precision) 

S Biased 

exponent 

Significant 

31 23                     

0 

0, 1, 2x10
-38

 <=! X! <=3.4x10
38

  

Example 1: 

Let us say, we want to represent 23.25 in this the short real notation. First of all we represent 

23.25 in binary as 10111.01. Then we represent this as +1.011101x2
+4

. This is called the 

Normalized form of representation. In the normalized form, the mantissa will always have an 

integer part with value 1. The floating point notations supported by 8087 always represent a 

number in the normalized form. In the 32 bit and 64 bit floating point notations the integer part 

of mantissa, of value 1, is just implied to be present, but not explicitly indicated in the bit pattern 

for the number. Thus the LS 23 bits are used to indicate only the fractional part of the mantissa 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 132 
 

and so will be 011 1010 0000 0000 0000 0000. The MS bit will be 0 to indicate that the number 

is positive. The next 8 bits provide the exponent in excess 7FH format. Thus the next 8 bits will 

be 4 + 7F=83H = 1000 0011. Thus the 32 bit floating point representation for 23.25 will be  

sign 
Exp. In Ex 7FH 

23 bit fractional part of 

mantissa 

0 1000 0011 011 1010 0000 0000 0000 0000 

 

Example 2: 

Now let us see what is the value of the 32 bit floating point number 10111 1100 100 0000 0000 

0000 0000 0000. It has its MS bit as a 1. Thus the number is negative. The next 8 bits are 0111 

1100 = 7CH. Thus 7CH is the exponent in excess 7FH format. In other words, the actual 

exponent is 7CH-7FH=-03. the actual mantissa is obtained by appending 1. to the LS 23 bits. 

Thus the actual mantissa is 1.100 0000 0000 0000 0000 0000. Thus the value of the given 32 bit 

floating point number would be 

  -1.100 0000 0000 0000 0000 0000 x 2
-03

 

 = -1.1 x 2
-03

 

 = -0.0011 x 2
0
 

 = -0.0011 

 = -0.1875 

Thus the given 32 bit number represents the value –0.1875 

4. 64 bit Long Real 

Long Real (Double precision) 

 

 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 133 
 

S Biased 

exponent 

Significand 

63 52                     

0 

0,2,3 x 10
-308

 !X!<= 1.7x 10
308

 

In both single and double precision cases the 1 after . is assumed to be present. 

Sign 

0 = + 

1 = - 

11 bits 

exponent in 

Ex3FFH 

52 bits for fractional 

part with implied „1. ‟ 

before the fractional 

part. 

 

Example 1: 

Let us say, we want to represent 23.255 in this notation. First of all we represent 23.25 in binary 

as 10111.01. Then we represent this as +1.011101x2
+4

. This is called the Normalized form of 

representation. In the normalized form, the mantissa will always have an integer part with value 

1. The floating point notations supported by 8087 always represent a number in the normalized 

form. In the 32 bit and 64 bit floating point notations the integer part of the mantissa, of value 1, 

is just implied to be present, but not explicitly indicated in the bit pattern for the number. Thus 

the LS 52 bits are used to indicate only he fractional part of the mantissa and so will be 0111 

0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000.  The MS bit will be 0 to 

indicate that the number is positive. The next 11 bits provide the exponent in excess 3FFH 

format. Thus the next 11 bits will be 4+3FF=403H=100 0000 0011. Thus the 64 bit floating 

point representation for 23.25 will be 

sign 
Exp. In Ex 7FH 

52 bit fractional part of 

mantissa 

0 100 0000 0011 0111 0100 00……….00 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 134 
 

  Example 2: 

Now let us see what is the value of the 64 bit floating point number 1 100 0000 0011 0100 0000 

0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000. It has its MS bit as a 1. Thus the 

number is negative. The next 11 bits are 100 0000 0011 = 403H. Thus 403H is the exponent in 

excess 3FFH format. In other words, the actual exponent is 403H – 3FFH=+04. The actual 

mantissa is obtained by appending 1. to the LS 52 bits. Thus the actual mantissa is 1.0100 0000 

0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000. Thus the value of the given 64 bit 

floating point number would be 

   -1.0100 0000 … 0000 x 2
+04

 

  =  -1.01 x 2
+04

 

  = -10100 x 2
0
 

  = -10100 

  = -20 

Thus the given 64 bit number represents the value –20. 

 5. Temporary Real 

S Biased 

exponent 

1 Significand 

79 64 63                     0 

0,3.4x10
-4932

 <= !X! <= 1.1x10
4932

 

Example 1:  

Let us say, we want to represent 23.25 in this notation. First of all we represent 23.25 in binary 

as 10111.01. Then we represent this as +1.011101 x 2
+4

. This is called the normalized form of 

representation. In the normalized form, the mantissa will always have an integer part with value 

1. The floating point notations supported by 8087 always represent a number in the normalized 

form. 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 135 
 

Thus the LS 64 bits are used to indicate the mantissa and so will be 1011 1010 0000 0000 0000 

0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000. The MS bit will be 0 to indicate 

that the number is positive. The next 15 bits provide the exponent in excess 3FFFH format. Thus 

the next 15 bits will be 4+3FFF = 4003H = 100 0000 0000 0011. Thus the 80 bit floating point 

representation for 23.25 will be 

 

sign Exp. In Ex. 3FFFH 64 bit mantissa 

0 100 0000 0000 0011 1011 1010 00 …………….00 

Example 2:   

Now let us see what is the value of the 64 bit floating point number 1 100 0000 0000 0011 1010 

0000 …. 0000. It has its MS bit as a 1. Thus the number is negative. The next 15 bits are 100 

0000 0000 0011 = 4003H. Thus 4003H is the exponent in excess 3FFFH format. In other words, 

the actual exponent is 4003H-3FFFH=+04. The actual mantissa is 1.010 0000 …. 0000, where 

the binary point is implied to be present after the MS bit of the mantissa. Thus the value of the 

given 80 bit floating point number would be  

    -1.010 0000 … 0000 x 2
+04

 

  =  -1.01 x 2
+04

 

  = -10100 x 2
0
 

  = -10100 

  = -20 

Thus the given 80bit number represents the value –20. 

8087 Data types in a nut shell 

Data 

format 

Range Precision 7  0!7  0!7  0!7  0!7  0!7  0!7  0!7  0!7  0!7  

0! 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 136 
 

Word 

integer 

10
4
 16 bits 115                   10    two‟s complement 

Short 

integer 

10
4
 32 bits 131                   10    two‟s complement 

Long 

integer 

10
18

 64 bits 163                   10    two‟s complement 

Packed 

BCD 

10
18

 18 digits S D17 D16        D0 

Short real 10+38 24 bits SE7   E0 F1 F23  F0 implicit 

Long real 10+308 53 bits SE10   E0 F1 F52  F0 implicit 

Temporary 

real 

10+4932 64 bits SE14   E0 F0 F63 

 

• Integer  : 1 

• Packed BCD : (-1)S (D17 … D0) 

• Real  : (-1)S (2E-Bias) (F0.F1..) 

• Bias = 127 for short Real 

    = 1023 for long Real 

    = 16383 for Temp. Real  



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 137 
 

Interconnection of 8087 with 8086/88 

 

 

 

8087 can be connected with any of the 8086/8088/80186/80188 CPU‟s only in their maximum 

mode of operation. I.e. only when the MN/MX* pin of the CPU is grounded. In maximum mode, 

all the control signals are derived using a separate chip known as bus controller. The 8288 is 

8086/88 compatible bus controller while 82188 is 80186/80188 compatible bus controller.  

The BUSY pin of 8087 is connected with the TEST* pin of the used CPU. The QS0 and QS1 

lines may be directly connected to the corresponding pins in case of 8086/8088 based systems. 

However, in case of 80186/80188 systems these QS0 and QS1 lines are passed to the CPU 

through the bus controller. In case of 8086/8088 based systems the RQ*/GT0* of 8087 may be 

connected to RQ*/GT1* of the 8086/8088. The clock pin of 8087 may be connected with the 

CPU 8086/8088 clock input. The interrupt output of 8087 is routed to 8086/8088 via a 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 138 
 

programmable interrupt controller. The pins AD0 - AD15, BHE*/S7, RESET, A19 / S6 - A16 / S3 

are connected to the corresponding pins of 8086/8088. In case of 80186/80188 systems the 

RQ/GT lines of 8087 are connected with the corresponding RQ*/GT* lines of 82188. The 

interconnections of 8087 with 8086/8088 and 80186/80188 are shown in fig.  

 

Control Register of 8087 

 

In addition to the 8 registers, which are 80 bits wide, the 8087 has a control register, a status 

register, and a Tag register each 16 bits wide. 

The contents of the control register, generally referred to as the Control word, direct the working 

of the 8087. A common way of loading the control register from a memory location is by 

executing the instruction „FLDCW src‟, where „src‟ is the address of a memory location. 

FLDCW stands for „Load Control Word‟. For example, FLDCW [BX] instruction loads the 

control register of 8087 with the contents of the memory location whose 16 bit effective address 

is provided in BX register. 

The bit description of the control register is shown below. 

Bit 

No 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

 reserved I 

C 

Round 

ctrl 

Prec. 

ctrl 

Intr 

mask 

x P

M 

U

M 

O

M 

Z

M 

D

M 

I

M 

 

The LS 6 bits are used for individually masking 6 possible numerical error exceptions. If an 

exception is masked, by setting the corresponding bit to 1, the 8087 will handle the exception 

internally. It does not set the corresponding exception bit in the status register and it does not 

generate an interrupt request. This is termed the Masked response. 

They LS 6 bits, which correspond to the exception mask bits, are briefly described below. 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 139 
 

IM bit (Invalid operation Mask) at bit position 0 is used for masking invalid operation. An 

invalid operation exception generally indicates a stack overflow or underflow error, or an 

arithmetic error like, divisor is 0 or dividend is infinity. 

DM bit (Denormalized operand mask) at bit position 1 is used for masking denormalized 

operand exception. A denormalized result occurs when there is a floating point underflow. Thus, 

this exception occurs, for example, when an attempt is made to load a denormalized operand 

from memory. 

ZM bit (Zero divide mask) at bit position 2 is used for masking zero divide exception. This 

exception occurs when an attempt is made to divide a valid non zero operand by zero. This can 

happen in the case of explicit division instructions as well as for operations that perform division 

internally like in FXTRACT. 

OM bit (Overflow exception Mask) at bit position 3 is used for masking overflow exception. A 

overflow exception occurs when the exponent of the actual result is too large for the destination. 

UM bit (Underflow exception Mask) at bit position 4 is used for masking underflow exception. 

An underflow exception occurs when the exponent of the actual result is too small for the 

destination. 

PM bit (Precision exception Mask) at bit position 5 is used for masking precision exception. A 

precision exception occurs when the result of an operation loses significant digits when stored in 

the destination. 

Precision control bits (bits 9 and 8)  

These bits control the internal operating precision of the 8087. Normally, the 8087 uses 64 bit 

mantissa for all internal calculations. However, this can be reduced to 53 or 24 bits, for 

compatibility with earlier generation math processors, as shown below. 

Bit 9 Bit 8 Length of 

mantissa 

0 0 24 bits 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 140 
 

0 1 Reserved 

1 0 53 bits 

1 1 64 bits 

Rounding control bits (bits 11 and 10)  

These bits control the type of rounding that is used in calculations, as shown below. 

Bit  11 Bit 10 Rounding scheme 

0 0 Round to nearest 

0 1 Round down, towards - 

1 0 Roundup, towards + 

1 1 Chop or truncate towards 0 

 

Infinity control bit (bit 12)  

This bit controls the way infinity is treated. In the affine model of infinity, +  and -  are 

treated as a single unsigned quantity. 

Bit 12 Infinity model 

0 Projective 

1 Affine 

 

Contents of Control register after reset of 8087 

When the 8087 is reset, the control register is loaded with 037FH = 000 0 00 11 0 1 11 1111, 

which means the following. The same condition results when FINIT (stands for Initialize) 

instruction is executed. 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 141 
 

This condition is generally acceptable to a programmer. So, there is normally no need to 

explicitly load the control register using FLDCW instruction. 

Status register of 8087 

The status register is 16 bits wide. The contents of the status register, generally referred to as the 

Status word, indicates the status of the 8087. A common way of storing the contents of the status 

register into a memory location is by executing the instruction „FSTSW dst‟, where „dst‟ is the 

address of a memory location. FSTSW stands for Store Status Word‟. For example, FSTSW 

[BX] instruction stores the status register of 8087 into the memory location whose 16 bit 

effective address is provided in BX register. This status can then be read by the 8086, by 

executing say MOV AX, [BX], to take action depending on the status of 8087. 

The bit description of the status register is shown below. 

 

Bit no. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

  

Bus

y 

 

C  

3 

 

Stack pointer 

 

C  

2 

 

C

1 

 

C

0 

 

Intr 

Req 

 

x 

 

P

E 

 

U

E 

 

O

E 

 

Z

E 

 

D

E 

 

I

E 

 

If the 8087 encounters an error exception during execution of an instruction, the corresponding 

exception bit is set to the 1 state, if the exception is not masked using the control word. The 

possible exceptions, as already discussed, are as follows. 

 Invalid operation Exception (IE, bit 0 of the status register) 

 Denormalized operand Exception (DE, bit 1 of status register) 

 Zero divide Exception (ZE, bit 2 of status register) 

 Overflow Exception (OE, bit 3 of status register) 

 Underflow Exception (UE, bit 4 of status register) 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 142 
 

 Precision Exception (PE, bit 5 of status register) 

The only way these exception bits are cleared is by the execution of FINIT, FCLEX (stands for 

clear exceptions), FLDENV (stands for load environment), FSAVE (stands for save environment 

and stack of registers), and FRSTOR (stands for restore environment and stack of registers). The 

term Environment stands for the following group of information of size 14 bytes. 

1. control word (2 bytes) 

2. Status word (2 bytes) 

3. Tag word (2 bytes) 

4. Exception pointer (8 bytes) 

The interrupt request bit (bit 7) in the status word is set to 1 by the 8086, if one or more 

exception bits are set to 1. Then the INT output pin of 8087 is activated if interrupt is not masked 

using the control word. 

C2, C2, C1, and C0 (bits 14, 10, 9, and 8) are the condition code flags of the 8087. The 8087 

updates these flags depending on the status of arithmetic operations. The FTST (stands for Test) 

and FCOM (stands for Compare) instructions also use these flags to report the result of their 

operations. Some of these bits are discusses later when the Compare instruction is described. 

Bits 13, 12, and 11 provide the address of the register which is currently the stack top. For 

example, if these bits are 110, it means that R6 is the current stack top. In other words, ST is R6, 

ST(1) is R7, ST(2) is R0, and so on. 

The Busy bit (bit 15) is set to 1 when the 8087 is busy executing an instruction, or busy 

executing an exception routine. When this bit is a 1, the BUSY output pin of 8087 is activated. 

A programmer needs to read the status register contents after the execution of FTST or FCOM 

instruction, to know the result of these instructions. In most of other cases, the programmer is not 

required to read the status register contents. 

Exception Pointer of 8087 

When the 8086 comes across an 8087 instruction, it saves the following information in a 4 word 

area termed as the exception pointer. 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 143 
 

1. 20 bit physical address of the instruction 

2. 11 bit opcode of the instruction 

3. 20 bit physical address of the data, if 8087 needs it. 

4. Remaining 13 bits are zeros. 

However, some instructions like FLDCW which need a memory operand, do not affect the 20 bit 

area of the exception pointer meant for address of data. 

The exception pointer is located in the 8086, and not in 8087, but appears to be part of 8087. 

Tag register of 8087 

The Tag register is 16 bits wide. The contents of the Tag register indicates the status of each of 

the 80 bit registers of the 8087. A common way of storing the contents of the Tag register is by 

executing the instruction „FSTENV dst‟, where „dst‟ is the address of a memory location. It 

stores the environment of 8087, of which Tag word is a part. FSTENV stands for „Store 

environment‟. For example, FSTENV [BX] instruction stores the environment of 8087 into 14 

byte memory locations whose 16 bit effective address is provided in BX register. 

The Tag register is loaded with a new value, when one of FINIT, FLDENV, or FRSTOR 

instructions are executed. 

The bit description of the Tag register is as shown below. 

Bit no. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

 TAG 7 TAG 6 TAG 5 TAG 

4 

TAG 

3 

TAG 

2 

TAG 

1 

TAG 

0 

The status of each 80 bit stack register is provided using a 2 bit field in the Tag register. The 

field labeled TAG 3 indicates the status of R3. It should be noted that TAG 3 is not indicating the 

status of ST(3). The Tag bits indicate the status of a stack register as shown below. 

Tag bits Status 

00 Valid data in the register 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 144 
 

01 Zero value in the register 

10 Special number, like _ or decimal, in the 

register 

11 The register is empty 

The Tag word is not normally used in programs. However it can be used to quickly interpret  the 

contents of a floating point register, without the need for extensive decoding. 

FINIT instruction 

 Infinity condition is projective (treats +  and -  as same) 

 Rounds to nearest 

 Length of mantissa is 64 bits 

 Interrupt is enabled 

 All exceptions are masked 

 No need for FLDCW 

8087 Instruction Set 

The instruction set of 8087 starts with F, stands for floating point. The instruction of 8087 

numeric data processor can be classified into following six groups: 

1. Data transfer instructions 

2. Arithmetic instructions 

3. Compare Instructions 

4. Transcendental instructions 

5. Load constant instructions 

6. Processor control instructions 

 

1. Data Transfer Instructions 

(a) Real Transfers 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 145 
 

S. No. Instruction Description with example 

1 FLD source Decrements stack pointer by one and copies a real number 

from a stack element or memory to the new ST. A short – 

real or long-real number from memory is automatically 

converted to temporary real format by the 8087 before it is 

put in ST. 

Examples: 

FLD  ST(2)   ; Copies ST(2) to ST 

FLD  [BX] ; Number from memory pointed by BX 

copied to ST 

2 FST Destination Copies ST to a specified stack position or to a specified 

memory location. 

Examples: 

FST  ST(3) ; Copy ST to ST(3) 

FST  [BX] ; Copy ST to memory pointed by [BX] 

3 FSTP destination Copies ST to a specified stack element or memory location 

and increments stack pointer by one to point to the next 

element on the stack. This is a stack POP operation. 

4 FXCH destination Exchanges contents of ST with the contents of a specified 

stack element. If no destination is specified, then ST(1) is 

used. 

Example: 

FXCH  ST(4) ; Swap ST and ST(4) 

(b) Integer transfers 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 146 
 

S. No. Instruction Description with example 

5 FILD source Integer load. Converts integer number from memory to 

temporary real format and pushes converted number on 

8087 stack. 

Example: 

FILD  DWORD  PTR  [BX] ; Short integer from memory 

location pointed by [BX] 

6 FIST destination Integer store. Converts number from ST to integer form, and 

copies to memory. 

Example: 

FIST  INT_NUM ; ST to memory locations named 

INT_NUM 

7 FISTP destination Integer store and pop. Similar to FIST except that stack 

pointer is incremented after copy. 

 

(c) Packed Decimal Transfers 

S. No. Instruction Description with example 

8 FBLD source Packed decimal (BCD) load. Convert number from memory 

to temporary-real format and push on top of 8087 stack. 

Example: 

FBLD AMOUNT ; Ten byte BCD number from 

memory location AMOUNT to ST 

9 FBSTP BCD store in memory and pop 8087 stack. Pops temporary 

– real from stack, converts to 10-byte BCD, and stores result 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 147 
 

destination to memory. 

Example: 

FBSTP MONEY ; Contents from top of stack are 

converted to BCD, and stored in memory. 

2. Arithmetic Instructions 

S. No. Instruction Description with example 

1 FADD  

destination, 

source 

Will add real number from specified source to real number 

at specified destination. Source can be stack element or 

memory location. Destination must be a stack element. If no 

source or destination is specified, then ST is added to ST(1) 

and the stack pointer is incremented so that the result of the 

addition is at ST. 

Examples: 

FADD  ST(2), ST ; Add ST to ST(2), result in ST(2) 

FADD ST, ST(5) ; Add ST(5) to ST, result in ST 

FADD SUM  ; Real number from memory + ST 

FADD   ; ST + ST(1), pop stack-result at ST 

2 FADDP  

destination, 

source 

Adds ST to specified stack element and increments stack 

pointer by one. 

Example: 

FADDP  ST(2)  ; Add ST(2) to ST 

   ; Increment stack pointer so ST(2)  

   ; becomes ST 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 148 
 

3 FIADD source Adds integer from memory to ST, Stores the result in ST. 

Example: 

FIADD CARS_SOLD ;Integer number from memory 

+ ST 

4 FSUB 

destination, 

source 

Subtracts the real number at the specified source from the 

real number at the specified destination and puts the result 

in the specified destination. 

Examples: 

FSUB  ST(3), ST ; ST(3) ST(2) – ST 

FSUB DIFFERENCE ; STST-real from memory 

FSUB   ; ST(ST(1)-ST) 

5 FSUBP 

destination, 

source 

Subtracts ST from specified stack element and puts result in 

specified stack element. Then increments stack pointer by 

one. 

Examples: 

FSUBP ST(2) ; ST(2) – ST . ST(1) becomes new ST. 

6 FISUB source Subtracts integer number stored in memory from ST and 

stores result in ST. 

Example: 

FISUB  DIFFERENCE  ; STST-integer from 

memory 

7 FSUBR 

destination, 

These instructions operate same as FSUB instructions 

discussed earlier except that these instructions subtract the 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 149 
 

source contents of the specified destination from the contents of the 

specified source and put the difference in the specified 

destination. 

[Normal FSUB instruction subtracts source from 

destination.]  

8 FSUBRP 

destination, 

source 

9 FISUBR source 

10 FMUL 

destination, 

source 

Multiply real number from source by real number from 

specified destination, and put result in specified stack 

element. 

Examples: 

FMUL  ST(2), ST ; Multiply ST(2) and ST, result in 

ST(2) 

FMUL  ST, ST(5) ; Multiply ST(5) to ST, result in ST 

 FMULP 

destination, 

source 

Multiplies the real number from specified source by real 

number from specified destination, puts result in specified 

stack element, and increment stack pointer by one. With no 

specified operands FMULP multiplies ST(1) by ST and 

Pops stack to leave result at ST. 

Example: 

FMULP  ST(2)  ; Multiply ST(2) to ST. 

increment stack pointer so STI(1) becomes ST 

11 FIMUL source Multiply integer from memory at ST and put result in ST. 

Example: 

FIMUL  DWORD  PTR  [BX] 

;Integer number from memory pointed by BX x ST and 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 150 
 

result in ST 

12 FDIV destination, 

source 

Divides destination real by source real, stores result in 

destination. 

Example: 

FDIV  ST(2), ST ; Divides ST by ST(2) 

   ; stores result in ST 

13 FDIVP 

destination, 

source 

Same as FDIV, but also increments stack pointer by one 

after DIV 

Example: 

FDIV  ST(2), ST ; Divides ST by ST(2), stores result in 

ST and increments stack pointer 

14 FIDIV source  Divides ST by integer from memory, stores result in ST. 

Example: 

FIDIV  PERCENTAGE; STST/integer number 

15 FDIVR 

destination, 

source 

 

16 FDIVP 

destination, 

source 

 

17 FIDIVR source These three instructions are identical in format to the FDIV, 

FDIVP and FIDIV instructions above except that they 

divide the source operand by the destination operand and 

put the result in the destination. 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 151 
 

18 FSQRT Contents of ST are replaced with its square root. 

Example: 

FSQRT 

19 FSCALE Scales the number in ST by adding an integer value in ST(1) 

to the exponent of the number in ST. Fast way of 

multiplying by integral powers of two. 

20 FPREM Partial reminder. The contents of ST(1) are subtracted from 

the contents of ST over and over again until the contents of 

ST are smaller than the contents of ST(1) 

Example: 

FPREM 

21 FRNDINT Round number in ST to an integer. The round – control 

(RC) bits in the control word determine how the number 

will be rounded.  

22 FXTRACT Separates the exponent and the significant parts of a 

temporary real number in ST. After the instruction executes, 

ST contains a temporary – real representation of the 

significant of the number and ST(1) contains a temporary 

real representation of the exponent of the number. 

23 FABS Replaces ST by its absolute value. Instruction simply makes 

sign positive. 

24 FCHS Complements the sign of the number in ST. 

 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 152 
 

3. Compare Instructions 

These instructions compare the contents of ST with contents of specified or default source. The 

source may be another stack element or real number in memory. Such compare instructions set 

the condition code bits C3, C2 and C0 of the status words use as shown in the table below. 

C3 C2 C0 Description 

0 0 0 ST contents is greater than the other operand 

0 0 1 ST contents is smaller than the other operand 

1 0 0 ST contents is equal to the other operand 

1 1 1 The operands are not comparable 

 

Different compare instructions: 

S. No. Instruction Description with example 

1 FCOM source Compares ST with real number in another stack element or 

memory. 

Examples: 

FCOM   ; Compares ST with ST(1) 

FCOM  ST(4)  ; Compares ST with ST(4) 

FCOM VALUE  ; Compares ST with real 

number from memory 

2 FCOMP source Identical to FCOM except that the stack pointer is 

incremented by one after the compare operation. 

3 FCOMPP Compares ST with ST(1) and increments stack pointer by 2 

after compare. 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 153 
 

4 FICOM source Compares ST to a short or long integer from memory. 

5 FICOMP source Identical to FICOM except stack pointer is incremented by 

one after compare. 

6 FTST Compares ST with zero. 

7 FXAM Tests ST to see if it is zero, infinity, unnormalized, or 

empty. Sets bits C3, C2, C1 and C0 to indicate result. 

4. Transcendental Instructions (Trigonometric and Exponential Instructions) 

S. No. Instruction Description with example 

1 FPTAN Computes the values for a ratio of Y/X for an angle in ST. 

the angle must be expressed in radians, and the angle must 

be in the range of 0 < angle < /4. 

(FPTAN does not work correctly for angles of exactly 0 and 

/4.) 

2 FPATAN Computes the angle whose tangent is Y/X. The X value 

must be in ST, and the Y value must be in ST(1). Also X 

and Y must satisfy the inequality 0 < Y < X < . The 

resulting angle expressed in radians replaces Y in the stack. 

After the operation the stack pointer is incremented so the 

result is then ST.  

3 F2XM1 Computes the function Y = 2
x
 – 1 for an X value in ST. the 

result, Y replaces X in ST. X must be in the range 0 ≤ X ≤ 

0.5 

4 FYL2X Calculates Y times the log to the base 2 of X or Y (log2X). 

X must be in the range of 0 < X <  and Y must be in the 

range  



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 154 
 

- < Y < +. X must initially be in ST and Y must be in 

ST(1). The result replaces Y and then the stack is popped so 

that the result is then at ST. 

5 FYL2XP1 Computes the function Y times the log to the base 2 of 

(X+1) or Y (log2 (X+1)). This instruction is almost identical 

to FYL2X except that it gives more accurate results when 

computing the logoff a number very close to one. 

5. Load constant Instructions 

S. No. Instruction Description 

1 FLDZ - Push 0.0 onto stack 

2 FLDI - Push + 1.0 onto stack 

3 FLDPI - Push the value  onto stack  

4 FLD2T - Push log of 10 to the base 2 onto stack 

(log210) 

5 FLDL2E - Push log of e to the base 2 onto stack 

(log2e) 

6 FLDLG2 - Push log of 2 to the base 10 onto stack 

(log102) 

 

Note: The load constant instruction will just push indicated constant into the stack. 

6. Processor Control Instructions 

S. No. Instruction Description 

1 FINIT/FNINT Initializes 8087. Disables interrupt output, sets stack 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 155 
 

pointer to register 7, sets default status. 

2 FDISI/FNDISI Disables the 8087 interrupt output pin so that it can not 

cause an interrupt when an exception (error) occurs. 

3 FENI/FNENI Enables 8087 interrupt output so it can cause an 

interrupt when an exception occurs. 

4 FLDCW source Loads a status word from a memory location into the 

8087 status register. This instruction should be 

preceded by the FCLEX instruction to prevent a 

possible exception response if an exception bit in the 

status word is set. 

5 FSTCW/FNSTCW 

destination 

Copies the 8087 control word to a memory location. 

You can determine its current value with 8086 

instructions.  

6 FSTSW/FNSTW 

destination 

Copies the 8087 status word to a memory location. You 

can check various status bits with 8086 instructions and 

take further action on the state of these bits. 

7 FCLEX/FNCLEX Clears all of the 8087 exception flag bits in the status 

register. Unasserts BUSY and INT outputs. 

8 FSAVE/FNSAVE 

destination 

Copies the 8087 control word, status word, pointers 

and entire register stack to 94-byte area of memory. 

After copying all of this the FSAVE/FNSAVE 

instruction initializes the 8087. 

9 FRSTOR source Copies a 94 byte area of memory into the 8087 control 

register, status register, pointer registers, and stack 

registers. 

10 FSTENV / Copies the 8087 control register, status register, tag 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 156 
 

FNSTENV 

destination 

words, and exception pointers to a series of memory 

locations. This instruction does not copy the 8087 

register stack to memory as the FSAVE / FNSAVE 

instruction does. 

11 FLDENV source Loads the 8087 control register, status register, tag 

word and exception pointers from a named area in 

memory. 

12 FINCSTP Increment the 8087 stack pointer by one. 

13 FDECSTP Decrement the stack pointer by one. 

14 FFREE destination Changes the tag for the specified destination register to 

empty. 

15 FNOP Performs no operation. Actually copies ST to ST. 

16 FWAIT This instruction is actually an 8086 instruction which 

makes the 8086 wait until it receives a not busy signal 

from the 8087 to its TEST* pin. 

Note: the processor control instructions actually do not perform computations but they are made 

used to perform tasks like initializing 8087, enabling intempty, etc. 

 

 

  



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 157 
 

UNIT - 7(6 Hours) 

SYSTEM BUS STRUCTURE: Basic 8086 configurations: minimum mode, maximum mode, 

Bus Interface: peripheral component interconnect (PCI) bus, the parallel printer interface (LPT), 

the universal serial bus (USB) 

 

TEXT BOOKS: 

 

1. Microcomputer systems-The 8086 / 8088 Family – Y.C. Liu and G. A. Gibson, 2E PHI 

-2003  

2. The Intel Microprocessor, Architecture, Programming and Interfacing-Barry B. 

Brey, 6e, Pearson Education / PHI, 2003  

 

  



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 158 
 

UNIT - 7(6 Hours) 

SYSTEM BUS STRUCTURE 

8086 INTERFACING  

When the minimum mode operation is selected, the 8086 provides all control signals needed to 

implement the memory and I/O interface. The minimum mode signal can be divided into thee 

following basic groups: 

1. Addresss bus/data bus 

2. Status 

3. Control 

4. Interrupt 

5. DMA 

Address/data bus: 

 These lines serve 2 functions. As an address bus is 20 bits long and consists  of signals 

lines A0 through A19,A19represents the MSB and A0,LSB. A 20 bit address gives the 

8086 a 1 Mbyte memory address space. It has an independent I/O address space which is 

64 K bytes in length. 

 The 16 databus lines D0 through D15 are actually multiplexed with address lines A0 

through A15 respectively. By multiplexed, we mean that bus work as an address bus 

during first machine cycle and as a data bus during next machine cycles, 

 D15 is the MSB and D0 LSB. When acting as a data bus, they carry read/write data for 

memory, input/output data for I/O devices, and the interrupt type codes from an interrupt 

controller. 

 

MINIMUM-MODE AND MAXIMUM-MODE  

The 8086 can be configured to work in either of two modes:  

• The minimum mode is selected by applying logic 1 to the MN/MX input lead. It  is typically 

used for smaller single microprocessor systems.  



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 159 
 

• The maximum mode is selected by applying logic 0 to the MN/MX input lead.  It is typically 

used for larger multiple microprocessor systems.  

• Depending on the mode of operation selected, the assignments for a number of  the pins on the 

microprocessor package are changed. The pin functions  specified in parentheses pertain to the 

maximum-mode.  

• We will only discuss minimum-mode operation of the 8086. In minimum  mode, the 8086 itself 

provides all the control signals needed to implement the  memory and I/O interfaces In 

maximum-mode, a separate chip  (the 8288 Bus Controller) is used to help in sending control 

signals over the  shared bus 

 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 160 
 

Address/Data Bus: The address bus is 20 bits long and consists of signal lines A0 (LSB) through 

A19 (MSB). However, only address lines A0 through A15 are used when accessing I/O. 

• The data bus lines are multiplexed with address lines. For this reason, they are denoted as AD0 

through AD15. Data line D0 is the LSB. 

• Status Signals: The four most significant address lines A16 through A19 of the 8086 are 

multiplexed with status signals S3 through S6. These status bits are output on the bus at the same 

time that data are transferred over the other bus lines. 

 Control Signals: 

• When Address latch enable (ALE) is logic 1 it signals that a valid address is on the bus. This 

address can be latched in external circuitry on the 1-to-0 edge of the pulse at ALE. 

• M/IO (memory/IO) tells external circuitry whether a memory or I/O transfer is taking place 

over the bus. Logic 1 signals a memory operation and logic 0 signals an I/O operation. 

• DT/R (data transmit/receive) signals the direction of data transfer over the bus. Logic 1 

indicates that the bus is in the transmit mode (i.e., data are either written into memory or to an 

I/O device). Logic 0 signals that the bus is in the receive mode (i.e., reading data from memory 

or from an input port). 

• The bank high enable (BHE) signal is used as a memory enable signal for the most significant 

byte half of the data bus, D8 through D15. 

• WR (write) is switched to logic 0 to signal external devices that valid output data are on the 

bus. 

• RD (read) indicates that the MPU is performing a read of data off the bus. During read 

operations, one other control signal, DEN (data enable), is also supplied. It enables external 

devices to supply data to the microprocessor. 

• The READY signal can be used to insert wait states into the bus cycle so that it is extended by 

a number of clock periods. This signal is supplied by a slow memory or I/O subsystem to signal 

the MPU when it is ready to permit the data transfer to be completed. 

• Interrupt Signals: 

• Interrupt request (INTR) is an input to the 8086 that can be used by an external device to signal 

that it needs to be serviced. Logic 1 at INTR represents an active interrupt request. 

• When the MPU recognizes an interrupt request, it indicates this fact to external circuits with 

logic 0 at the interrupt acknowledge (INTA) output. 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 161 
 

• On the 0-to-1 transition of nonmaskable interrupt (NMI), control is passed to a nonmaskable 

interrupt service routine at completion of execution of the current instruction. NMI is the 

interrupt request with highest priority and cannot be masked by software. 

• The RESET input is used to provide a hardware reset for the MPU. Switching RESET to logic 

0 initializes the internal registers of the MPU and initiates a reset service routine. 

• DMA Interface Signals: 

• When an external device wants to take control of the system bus, it signals this fact to the MPU 

by switching HOLD to the logic level 1. 

• When in the hold state, lines AD0 through AD15, A16/S3 through A19/S6, BHE, M/IO, DT/R , 

WR , RD, DEN and INTR are all put in the high-Z state. The MPU signals external devices that 

it is in this state by switching HLDA to 1. 

 

Maximum Mode Interface 

 When the 8086 is set for the maximum-mode configuration, it provides signals for 

implementing a multiprocessor / coprocessor system environment.  

 By multiprocessor environment we mean that one microprocessor exists in the 

system and that each processor is executing its own program.  

 Usually in this type of system environment, there are some system resources that are 

common to all processors.They are called as global resources. There are also other 

resources that are assigned to specific processors. These are known as local or private 

resources.  

 Coprocessor also means that there is a second processor in the system. In this two 

processor does not access the bus at the same time. One passes the control of the 

system bus to the other and then may suspend its operation.  

 In the maximum-mode 8086 system, facilities are provided for implementing 

allocation of global resources and passing bus control to other microprocessor or 

coprocessor.  

 8086 does not directly provide all the signals that are required to control the memory, 

I/O and interrupt interfaces. 

 Specially the WR, M/IO, DT/R, DEN, ALE and INTA, signals are no longer 

produced by the 8086. Instead it outputs three status signals S0, S1, S2 prior to the 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 162 
 

initiation of each bus cycle. This 3- bit bus status code identifies which type of bus 

cycle is to follow. 

 S2S1S0 are input to the external bus controller device, the bus controller generates 

the appropriately timed command and control signals. 

S2 S1 S0 Indication 

8288 

Command 

0 

0 

0 

0  

 

1 

1 

1  

 

1 

0 

0 

1 

1 

0 

0 

1  

 

1 

0 

1 

0 

1  

 

0 

1 

0  

 

1 

Interrupt 

Acknowledge  

 

Read I/O port  

 

Write I/O port 

Halt 

Instruction Fetch  

 

Read Memory  

 

Write Memory 

Passive  

 

INTA 

 

IORC 

 

IOWC , 

AIOWC  

 

None 

MRDC 

 

MRDC 

 

MWTC, 

AMWC 

None 

 

 The 8288 produces one or two of these eight command signals for each bus cycles. For 

instance, when the 8086 outputs the code S2S1S0 equals 001, it indicates that an I/O read 

cycle is to be performed.  

 In the code 111 is output by the 8086, it is signaling that no bus activity is to take place.  

 The control outputs produced by the 8288 are DEN, DT/R and ALE. These 3 signals 

provide the same functions as those described for the minimum system mode. This set of 

bus commands and control signals is compatible with the Multibus and industry standard 

for interfacing microprocessor systems. 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 163 
 

 The output of 8289 are bus arbitration signals: 

    Bus busy (BUSY), common bus request (CBRQ), bus priority out (BPRO), bus priority 

(BPRN), bus request (BREQ) and bus clock (BCLK). 

 They correspond to the bus exchange signals of the Multibus and are used to lock other 

processor off the system bus during the execution of an instruction by the 8086.  

 In this way the processor can be assured of uninterrupted access to common system 

resources such as global memory.  

 Queue Status Signals : Two new signals that are produced by the 8086 in the maximum-

mode system are queue status outputs QS0 and QS1. Together they form a 2-bit ueue 

status code, QS1QS0.  

 

o Following table shows the four different queue status.   

QS1 QS0 Queue Status 

0 

(low) 0 

Queue Empty. The queue has been reinitialized as a 

result of the execution of a transfer instruction. 

0 1 

First Byte. The byte taken from the queue was the 

first byte of the instruction. 

1 0 

Queue Empty. The queue has been reinitialized as a 

result of the execution of a transfer instruction. 

1 1 

Subsequent Byte. The byte taken from the queue was 

a subsequent byte of the instruction. 

 

Local Bus Control Signal – Request / Grant Signals: In a maximum mode configuration, the 

minimum mode HOLD, HLDA interface is also changed. These two are replaced by 

request/grant lines RQ/ GT0 and RQ/ GT1, respectively. They provide a prioritized bus access 

mechanism for accessing the local bus. 

 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 164 
 

BASIC 8086 CONFIGURATION  

Minimum mode versus maximum mode 

There are 2 available modes of operation for the 8086/8088 microprocessors:minimum and 

maximum mode. Minimum mode operation is obtained by connecting the mode selection pin 

MN/MX bar to +5 v, and maximum mode is selected by grounding this pin. Both modes enable 

different control structures for the 8086/8088 microprocessors. The mode of operation provided 

by minimum mode is familiar to that of the 8085 A, the most recent intel 8 bit up, whereas 

maximum mode is new and unique and designed to be used whenever a coprocessor exists in a 

system. 

Minimum mode operation 

Minimum mode operation is  the least expensive way to operate the 8086/8088 

microprocessors.it costs less because aa the control signals for the memory and i/o are generated 

by the microprocessor. These control signals are identical to those of the intel 8085 A, an earlier 

8 bit microprocessor. The minimum mode allows the 8085 A, a 8 bit peripherals to be used with 

the 8086/8077 without any special considerations. 

Maximum mode operation 

Maximum mode operation differs from Minimum mode operation in that some of the control 

signals must be externally generated. This requires the addition of an external bus controller-

8288 bus controller. There are not enough pins on the 8086/8088 for the bus control during 

maximum mode because new pins and new features have replaced some of them. Maximum 

mode is used only when the system contains external processors such as the 8087 arithmetic 

coprocessor 

 

 

 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 165 
 

 

 

 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 166 
 

  

 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 167 
 

 

 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 168 
 

 

 

 

 

 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 169 
 

 

 

 

 

 

  



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 170 
 

UNIT – 8 (7 Hours) 

80386, 80486 AND PENTIUM PROCESSORS: Introduction to the 80386 microprocessor, 

Special 80386 registers, Introduction to the 80486 microprocessor, Introduction to the Pentium 

microprocessor. 

 

 

TEXT BOOKS: 

 

1. Microcomputer systems-The 8086 / 8088 Family – Y.C. Liu and G. A. Gibson, 2E PHI 

-2003  

2. The Intel Microprocessor, Architecture, Programming and Interfacing-Barry B. 

Brey, 6e, Pearson Education / PHI, 2003  

  



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 171 
 

UNIT – 8  

80386, 80486 AND PENTIUM PROCESSORS 

INTRODUCTION TO 80386 MICROPROCESSOR: 

 
Introduced in 1986, the Intel 80386 provided a major upgrade to the earlier 8086 and 80286 

processors in system architecture and features. The 80386 provided a base reference for the 

design of all Intel processors in the X86 family since that time, including the 80486, Pentium, 

Pentium Pro, and the Pentium II and III. All of these processors are extensions of the original 

design of the 80386. All are upwardly compatible with it. Programs written to run on the 80386 

can be run with little or no modification on the later devices. The addressing scheme and internal 

architecture of the 80386 have been maintained and improved in the later microprocessors – thus 

a family of devices has evolved over the years that is the standard of a wide industry and upon   a 

vast array of software and operating system environments. 

Major features of the 80386 include the following: 

 -bit wide address bus providing a real memory space of 4 gigabytes. 

 -bit wide data bus. 

  

 Memory management, with four levels of protection. 

 Virtual memory support, allowing 64 terabytes of virtual storage. 

 -bit data types. 

 Three primary modes of operation (Real, Protected, Virtual 8086). 

 CMOS IV technology, 132-pin grid array. 

 ity with earlier X86 designs. 

PIN DESCRIPTIONS 

Symbol Type Function 

CLK2 In Provides the fundamental timing for the device. 

D0 – D31 I/O Data Bus inputs data during memory, I/O, or interrupt read cycles, and 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 172 
 

outputs data during memory and I/O cycles. 

A2 – A31 Out Address Bus provides physical memory or I/O port addresses. 

BE0# - 

BE3# 
Out 

Byte Enable signals decode A0 and A1 to indicate specific banks for memory 

data transfers. 

W/R# Out Write/Read defines nature of data transaction in progress. 

D/C# Out 
Data/Control distinguishes data transfer cycles (memory or I/O) from control 

cycles (interrupt, halt, instruction fetch).  

M/IO# Out Memory/IO identifies source/destination of current cycles. 

LOCK# Out 
Bus Lock responds to a prefix byte on an instruction that indicates that other 

bus masters may not intercede the current cycle until it is complete. 

ADS# Out 

Address Status indicates that a valid set of addressing signals are being 

driven onto the device pins.These include W/R#, D/C#, M/IO#, BE0#-BE3#, 

and A2-A31.  

NA# In Next Address is used to request address pipelining. 

READY# In Bus Ready requests a wait state from attached devices. 

BS16# In Bus Size 16 requests a 16-bit rather than a 32-bit data transfer. 

HOLD In Bus Hold Request initiates a DMA cycle. 

HLDA Out 
Bus Hold Acknowledge indicates that the processor is honoring a DMA 

request./TD> 

BUSY# In Busy is a synchronization signal from an attached coprocessor, e.g., 80387. 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 173 
 

ERROR# In Error signals an error condition in an attached coprocessor. 

PEREQ In 
Processor Extension Request synchronizes a coprocessor data transfer via 

the 80386. 

INTR In Interrupt accepts a request from a interrupting device (maskable). 

NMI In Non-Maskable Interrupt forces an interrupt that cannot be ignored. 

RESET In 
Reset causes the processor to enter a known state and destroys any execution 

in progress. 

N/C   No Connect indicates pins that are not to have any electrical connections. 

VCC In Power Supply typically +5 volts. 

VSS In Ground. 

 

Refer to the following diagram for illustration. 

The Intel 80386 data flow consists of three primary areas. These are the bus interface unit (BIU), 

the central processing unit (CPU), and a memory management unit (MMU). These are 

interconnected within the device by several 32-bit-wide data busses and an internal control bus. 

The Bus Interface Unit (BIU) provides the attachments of the device to the external bus system. 

The circuits include a set of address bus drivers which generate or receive the A2 – A31 address 

lines; the BE0 – BE3 byte selection lines; the control lines M/IO, D/C, W/R, Lock, ADS, NA, 

BS16, and Ready; and interface with the D0 – D31 data bus lines. The unit includes a pipeline 

control element which provides the memory access pipelining that permits fast data transfer from 

contiguous memory locations. The unit also includes a set of multiplex transceivers to handle the 

direction of incoming or outgoing data and address information. Also included is a control 

element that handles requests for interrupts, DMA cycles, and coprocessor synchronization. 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 174 
 

The Central Processing Unit (CPU) is connected to the BIU via two paths. One is the direct 

ALU bus (across the bottom of the drawing) that allows exchange of addressing information and 

data between the CPU and the BIU if needed. The second is the normal path for instruction parts 

which go by way of an instruction prefetching element that is responsible for requesting 

instruction bytes from the memory as needed; an instruction predecoder that accepts bytes from 

the queue and ensures at least 3 instructions are available for execution; the instruction decoder 

and execution unit that causes the instruction to be performed. This is accomplished by the use of 

microprograms stored in the system control ROM which is stepped through to control the data 

flow within and around the Arithmetic Logic Unit (ALU). 

The ALU consists of a register stack which contains both programmer-accessible and 

nonaccessible 32-bit registers; a hardware multiply/divide element; and a 64-bit barrel shifter for 

shifts, rotates, multiplies, and divides. The ALU provides not only the data processing for the 

device but also is used to compute effective addresses (EAs) for protected mode addressing. The 

Memory Management Unit (MMU) provides the support for both the segmentation of main 

memory for both protected mode and real mode, and the paging elements for virtual memory. In 

real mode, the segmentation of the main memory is limited to a maximum segment size of 64K 

bytes, and a maximum memory space of 1.024 megabytes. This is in concert with the Intel 8086 

upon which this processor is based. In protected mode, several additional registers are added to 

support variable length segments to a maximum theoretical size of 4 gigabytes, which in turn 

supports multitasking and execution priority levels. Virtual mode using the device‟s paging unit 

allows a program or task to consume more memory than is physically attached to the device 

through the translation of supposed memory locations into either real memory or disk-based data. 

MODES OF OPERATION 

The Intel 80386 has three modes of operation available. These are Real Mode, Protected Mode, 

and Virtual 8086 mode. 

Real Mode operation causes the device to function as would an Intel 8086 processor. It is faster 

by far that the 8086. While the 8086 was a 16-bit device, the 80386 can provide 32-bit 

extensions to the 8086‟s instructions. There are additional instructions to support the shift to 

protected mode as well as to service 32-bit data. In Real Mode, the address space is limited to 

1.024 megabytes. The bottom 1,024 bytes contain the 256 4-byte interrupt vectors of the 8086. 

The Reset vector is FFFF0h. While the system can function as a simple DOS computer in this 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 175 
 

mode forever, the main purpose of the mode is to allow the initialization of several memory 

tables and flags so that a jump to Protected Mode may be made. 

Protected Mode provides the 80386 with extensive capabilities. These include the memory 

management, virtual memory paging, multitasking, and the use of four privilege levels which 

allows the creation of sophisticated operating systems such as Windows NT and OS/2. (These 

will be further explained.) 

Virtual 8086 Mode allows the system, once properly initialized in Protected Mode, to create one 

or more virtual 8086 tasks. These are implemented essentially as would be a Real Mode task, 

except that they can be located anywhere in memory, there can be many of them, and they are 

limited by Real Mode constructs. This feature allows a 386-based computer, for example, to 

provide multiple DOS sessions or to run multiple operating systems, each one located in its own 

8086 environment. OS/2 made use of this feature in providing multiple DOS sessions and to 

support its Windows 3.1 emulator. Windows NT uses the feature for its DOS windows. 

REGISTER ORGANIZATION 

Programmer-visible Registers The „386 provides a variety of General Purpose Registers (GPRs) 

that are visible to the programmer. These support the original 16-bit registers of the 8086, and 

extend them to 32-bit versions for protected mode programming. 

Chart goes here. The AX, BX, CX, and DX registers exist in the same form as in the 8086. The 

may be used as 16- bit registers when called with the "X" in their name. They may also be used 

as 8-bit registers when defined with the "H" and "L" in their names. Hence, the AX register is 

used as a 16-bit device while the AH and AL are used as 8-bit devices. Similarly, Source Index 

(SI), Destination Index (DI), Base Pointer (BP) and Stack Pointer (SP) registers exist in their 

traditional 16-bit form. To use any of these registers as 32-bit entities, the letter "E", for 

extended, is added to their names. 

Hence, the 16-bit AX register can become the 32-bit EAX register, the 16-bit DI register 

becomes the 32-bit EDI register, etc. 

The registers of the „386 includes the 8086‟s Code Segment (CS) register, Stack Segment (SS) 

register, Data Segment (DS) register, and Extra Segment (ES) register which are used as 

containers for values pointing to the base of these segments. Additionally, two more data-

oriented segment registers, the FS and GS registers, are provided. In real mode, these registers 

contain values that point to the base of a segment in the real mode‟s 1.048 megabyte address 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 176 
 

space. An offset is added to this displaced to the right which generates a real address. In 

protected mode, the segment registers contain a "selector" value which points to a location in a 

table where more information about the location of the segment is stored. 

The „386 also provides an Instruction Pointer (IP) register and a Flags (FLAGS) register which 

operate as they did in the 8086 in real mode. In protected mode, these become 32-bit devices 

which provide extended features and addressing. The 32-bit FLAGS register contains the 

original 16 bits of the 8086-80286 flags in bit positions 0 through 15 as follows. These are 

available to real mode. 

Bit Flag Description 

0 CF Carry Flag 

1 1 Always a 1 

2 PF 
Parity Flag 

3 0 
Always a 0 

4 AF 
Auxiliary Carry Flag 

5 0 
Always a 0 

6 ZF 
Zero Flag 

7 SF 
Sign Flag 

8 TF 
Trap Flag 

9 IF 
Interrupt Enable 

10 DF 
Direction Flag 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 177 
 

11 OF 
Overflow Flag 

12-13 PL1,2 
I/O Privilege Level Flags 

14 NT 
Nested Task Flag 

15 0 
Always a 0 

 

Bit Flag Description 

16 RF Resume Flag 

17 VM Virtual Mode 

 

Here are some brief descriptions of the functions of these flags. 

CARRY FLAG – This flag is set when a mathematical function generated a carry out of the 

highest bit position of the result, such as when 9 + 1 = 10. 

PARITY FLAG – This flag is set when the low order 8 bits of an operation results in an even 

number of one‟s set on, that is, even parity. 

AUXILIARY CARRY FLAG – This flag is set when there is a carry out of the lower four bits of 

a 8-bit byte due to a mathematical operation. It supports the use of packed BCD encoding for 

accounting. 

ZERO FLAG – This flag is set if all bits of a result are 0. 

SIGN FLAG – This bit is set if the high-order bit of a result is a 1. In signed mathematics, this 

indicates a negative number. 

TRAP ENABLE FLAG – This flag supports the use of Exception 1 when single stepping 

through code with a debugger package. When the flag is set, the „386 will execute an Exception 

1 interrupt after the execution of the next instruction. If reset, the „386 will execute an Exception 

1 interrupt only at breakpoints. 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 178 
 

INTERRUPT ENABLE FLAG – This flag, when set, allows interrupts via the INTR device pin 

to be honored. 

DIRECTION FLAG – This flag supports string OP codes that make use of the SI or DI registers. 

It indicates which direction the succeeding count should take, decrement if the flag is set, and 

increment if the flag is clear. 

OVERFLOW FLAG – This flag is set if an operation results in a carry into the uppermost bit of 

the result value, that is, if a carry in the lower bits causes the sign bit to change. 

I/O PRIVILEGE LEVEL - These two flags together indicate one of four privilege levels under 

which the processor operates in protected mode. These are sometimes called "rings", with ring 0 

being the most privileged and ring 3 the least. 

RESUME FLAG – This flag supports a debug register used to manage breakpoints in protected 

mode. 

VIRTUAL MODE – This flag supports the third mode of operation of the processor, Virtual 

8086 mode. Once in protected mode, if set, this flag causes the processor to switch to virtual 

8086 mode. 

Programmer-invisible Registers 

To support protected mode, a variety of other registers are provided that are not accessible by the 

programmer. In real mode, the programmer can see and reference the segment registers CS, SS, 

DS, ES, FS, and GS as 16-bit entities. The contents of these registers are shifted four bit 

positions to the left, then added to a 16-bit offset provided by the program. The resulting 20-bit 

value is the real address of the data to be accessed at that moment. This allows a real address 

space of 220 or 1.048 megabytes. In this space, all segments are limited to 64K maximum size. 

In protected mode, segments may from 1 byte to 4.3 gigabytes in size. Further, there is more 

information that is needed than in real mode. Therefore, the segment registers of real mode 

become holders for "selectors", values which point to a reference in a table in memory that 

contains more detail about the area in the desired segment. Also, a set of "Descriptor Registers" 

is provided, one for each segment register. These contain the physical base address of the 

segment, the segment limit (or the size of the segment relative to the base), and a group of other 

data items that are loaded from the descriptor table. In protected mode, when a segment register 

is loaded with a new selector, that selector references the table that has previously been set up, 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 179 
 

and the descriptor register for that segment register is given the new information from the table 

about that segment. 

During the course of program execution, addressing references to that segment are made using 

the descriptor register for that segment. Four Control Registers CR0 – CR3 are provided to 

support specific hardware needs. CR0 is called the Machine Control Register and contains 

several bits that were derived in the 80286. These are: 

PAGING ENABLED, bit 31 – This bits when set enables the on-chip paging unit for virtual 

memory. 

TASK SWITCHED, bit 3 – This bit is set when a task switch is performed. 

EMULATE COPROCESSOR, bit 2 – This bit causes all coprocessor OP codes to cause a 

Coprocessor-Not-Found exception. This is turn will cause 80387 math coprocessor instructions 

to have to be interpreted by software. 

MONITOR COPROCESSOR, bit 1 – Works with the TS bit above to synchronize the 

coprocessor. 

PROTECTION ENABLED, bit 0 – This bit enables the shift to protected mode from real mode. 

1. A system reset. 

 

PROTECTED MODE ARCHTECTURE 

The 80386 is most impressive when running in protected mode. The linear address space can be 

as great as 232 (4294967295) bytes. With the paging unit enabled, the limit is 246 or about 64 

terabytes. The device can run all 8086 and 80286 code. It provides a memory management and a 

hardware-assisted protection mechanism that keeps one program‟s execution from interfering 

with another. Additional instructions are provided to support multitasking. The programmer sees 

an expanded address space available to her/him, and different addressing scheme. 

Memory Segmentation 

Memory segmentation in protected mode uses a segment base value and an offset in the manner 

of real mode. However, because of the increased size of the address space now available, a more 

complex arrangement is used. The segment register now contains a value called a selector. This 

is a 16-bit value which contains an offset into a table. This table, called a descriptor table, 

contains descriptors which are 8-byte values that describe more about the segment in question. 

Two tables provided are the Global Descriptor Table (GDT) and the Local Descriptor Table 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 180 
 

(LDT). The GDT contains information about segments that are global in nature, that is, available 

to all programs and normally used most heavily by the operating system. The LDT contains 

descriptors that are application specific. Both of these tables have a limit of 64K, that is, 8,192 8-

byte entries. There is also an Interrupt Descriptor Table (IDT) that contains information about 

segments containing code used in servicing interrupts. This table has a maximum of 256 entries. 

The upper 13 bits of the selector are used as an offset into the descriptor table to be used. The 

lower 3 bits are: 

 TI, a table selection bit – 0 = use the GDT, 1 = use the LDT. 

RPL, Requested Privilege Level bits = 00 is the highest privilege level, 11 is the lowest. The 

selector identifies the table to be used and the offset into that table where a set of descriptor bytes 

identifies the segment specifically. Each table can be 64K bytes in size, so if there are 8 bytes per 

table entry, a total of 8,192 entries can be held in one table at a given time. The contents of a 

descriptor are: 

 Bytes 0 and 1 – A 16-bit value that is connected to bits 0 – 3 of byte 6 to form the 

uppermost offset, or limit, allowed for the segment. This 20 bit limit means that a 

segment can be between 1 byte and 1 megabyte in size. See the discussion of the 

granularity bit below. 

 Bytes 2 and 3 – A 16-bit value connected to byte 4 and byte 7 to form a 32-bit base value 

for the segment. This is the value added to the offset provided by the program execution 

to form the linear address. 

 AV bit – Segment available bit, where AV=0 indicates not available and AV=1 indicates 

available. 

 D bit – If D=0, this indicates that instructions use 16-bit offsets and 16-bit registers by 

default. If D=1, the instructions are 32-bit by default. 

 Granularity (G) bit – If G=0, the segments are in the range of 1 byte to 1 megabyte. If 

G=1, the segment limit value is multiplied by 4K, meaning that the segments can have a 

minimum of 4K bytes and a maximum limit of 4 gigabytes in steps of 4K. 

 Byte 5, Access Rights byte – This byte contains several flags to further define the 

segment: 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 181 
 

 – A=0 indicates that the segment has not been accessed; A=1 indicates 

that the segment has been accessed (and is now "dirty"). 

 Bits 1, R/W bit; bit 2, ED/C bit; and bit 3, E bit. If bit 3 = 0, then the descriptor 

references a data segment and the other bits are interpreted as follows: bit 2, interpreted 

as the ED bit, if 0, indicates that the segment expands upward, as in a data segment; if 1, 

indicates that the segment expands in the downward direction, as in a stack segment; bit 

1, the R/W bit, if 0, indicates that the segment may not be written, while if 1 indicates 

that the segment is writeable.If bit 3 = 1, then the descriptor references a code segment 

and the other bits are interpreted as follows: bit 2, interpreted as the C bit, if 0, indicates 

that we should ignore the descriptor privilege for the segment, while if 1 indicates that 

privilege must be observed; bit 1, the R/W bit, if 0, indicates that the code segment may 

not be read, while if 1 indicates that the segment is readable. 

 Bit 4, System bit – If 0, this is a system descriptor; if 1, this is a regular code or data 

segment. 

 Bits 5 and 6, Descriptor Privilege Level (DPL) bits – These two bits identify the privilege 

level of the descriptor. 

 Bit 7, Segment Valid (P) bit – If 0, the descriptor is undefined. If 1, the segment contains 

a valid base and limit. Use the illustration below to follow the flow of address translation. 

Numbers in circles on the drawing match those below. File goes here 

1. The execution of an instruction causes a request to access memory. The segment portion 

of the address to be used is represented by a selector value. This is loaded into the 

segment register. Generally, this value is not changed too often, and is controlled by the 

operating system.  

2. The selector value in the segment register specifies a descriptor table and points to one of 

8,192 descriptor areas. These contain 8 bytes that identify the base of the real segment, its 

limit, and various access and privilege information. 

3.  The base value in the descriptor identifies the base address of the segment to be used in 

linear address space. 

4. The limit value in the descriptor identifies the offset of the top of the segment area from 

the base. 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 182 
 

5.  The offset provided by the instruction is used to identify the specific location of the 

desired byte(s) in linear address space, relative to the base value. The byte(s) thus 

specified are read or written as dictated by the instruction. 

Program Invisible Registers 

Several additional registers are provided that are normally invisible to the programmer but are 

required by the hardware of the processor to expedite its functions. Each of the segment registers 

(CS, DS, SS, ES, FS, and GS) have an invisible portion that is called a cache. The name is used 

because they store information for short intervals – they are not to be confused with the L1 or L2 

cache of the external memory system. The program invisible portions of the segment registers 

are loaded with the base value, the limit value, and the access information of the segment each 

time the segment register is loaded with a new selector. This allows just one reference to the 

descriptor table to be used for multiple accesses to the same segment. It is not necessary to 

reference the descriptor table again until the contents of the segment register is changed 

indicating a new segment of that type is being accessed. This system allows for faster access to 

the main memory as the processor can look in the cache for the information rather than having to 

access the descriptor table for every memory reference to a segment. The Global Descriptor 

Table Register (GDTR) and the Interrupt Descriptor Table Register (IDTR) contain the base 

address of the descriptor tables themselves and their limits, respectively. The limit is a 16-bit 

value because the maximum size of the tables is 64K. 

System Descriptors 

The Local Descriptor Table Register contains a 16-bit wide selector only. This value references a 

system descriptor, which is similar to that as described above, but which contains a type field 

that identifies one of 16 types of descriptor (specifically type 0010) that can exist in the system. 

This system descriptor in turn contains base and limit values that point to the LDT in use at the 

moment. In this way, there is one global descriptor table for the operating system, but there can 

be many local tables for individual applications or tasks if needed. System descriptors contain 

information about operating system tables, tasks, and gates. The system descriptor can identify 

one of 16 types as follows. You will notice that some of these are to support backward 

compatibility with the 80286 processor. 

Type Purpose 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 183 
 

0000 Invalid 

0001 Available 80286 Task State Segment 

0010 Local Descriptor Table 

0011 Busy 80286 Task State Segment 

0100 80286 Call Gate 

0101 Task Gate 

0110 80286 Interrupt Gate 

0111 80286 Trap Gate 

1000 Invalid 

1001 Available 80386 Task State Segment 

1010 Reserved 

1011 Busy 80386 Task State Segment 

1100 80386 Call Gate 

1101 Reserved 

1110 80386 Interrupt Gate 

1111 80386 Trap Gate 

 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 184 
 

Protection and Privilege Levels 

The 80386 has four levels of protection which support a multitasking operating system. These 

serve to isolate and protect user programs from each other and from the operating system. The 

privilege levels manage the use of I/O instructions, privileged instructions, and segment and 

segment descriptors. Level 0 is the most trusted level, while level 3 is the least trusted level. Intel 

lists the following rules for the access of data and instruction levels of a task: 

 

at a privilege level that is at least as privileged as P. 

 

executing at the same or a less privileged level than P. At any point in time, a task can be 

operating at any of the four privilege levels. This is called the task‟s Current Privilege 

Level (CPL).  

A task‟s privilege level may only be changed by a control transfer through a gate descriptor to a 

code segment with a different privilege level. The lower two bits of selectors contain the 

Requested Privilege Level (RPL). When a change of selector is made, the CPL of the task and 

the RPL of the new selector are compared. If the RPL is more privileged than the CPL, the CPL 

determines the level at which the task will continue. If the CPL is more privileged than the RPL, 

the RPL value will determine the level for the task. Therefore, the lowest privilege level is 

selected at the time of the change. The purpose of this function is to ensure that pointers passed 

to an operating system procedure are not of a higher privilege than the procedure that originated 

the pointer. 

Gates 

Gates are used to control access to entry points within the target code segment. There are four 

types: 

 Call Gates – those associated with Call, Jump, Return and similar operations codes. They 

provide a secure method of privilege transfer within a task. 

 Task Gates – those involved with task switching. 

 Interrupt Gates – those involved with normal interrupt service needs. 

 Trap Gates – those involved with error conditions that cause major faults in the 

execution. 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 185 
 

A gate is simply a small block of code in a segment that allows the system to check for privilege 

level violations and to control entry to the operating system services. The gate code lives in a 

segment pointed to by special descriptors. These descriptors contain base and offset values to 

locate the code for the gate, a type field, a two-bit Default Privilege Level (DPL) and a five-bit 

word count field. This last is used to indicate the number of words to be copied from the stack of 

the calling routine to that of the called routine. This is used only in Call Gates when there is a 

change in privilege level required. Interrupt and Trap gates work similarly except that there is no 

pushing of parameters onto the stack. For interrupt gates, further interrupts are disabled. Gates 

are part of the operating system and are mainly of interest to system programmers. 

Task Switching 

An important part of any multitasking system is the ability to switch between tasks quickly. 

Tasks may be anything from I/O routines in the operating system to parts of programs written by 

you. With only a single processor available in the typical PC, it is essential that when the needs 

of the system or operator are such that a switch in tasks is needed, this be done quickly. The 

80386 has a hardware task switch instruction. This causes the machine to save the entire current 

state of the processor, including all the register contents, address space information, and links to 

previous tasks. It then loads a new execution state, performs protection checks, and begins the 

new task, all in about 17 microseconds. The task switch is invoked by executing an intersegment 

jump or call which refers to a Task Switch Segment (TSS) or a task gate descriptor in the LDT or 

GDT. An INT n instruction, exception, trap, or external interrupt may also invoke a task switch 

via a task gate descriptor in the associated IDT. Each task must have an associated Task Switch 

Segment. This segment contains an image of the system‟s conditions as they exist for that task. 

The TSS for the current task, the one being executed by the system at the moment, is identified 

by a special register called the Task Switch Segment Register (TR). This register contains a 

selector referring to the task state segment descriptor that defines the current TSS. A hidden base 

and limit register connected to the TR are loaded whenever TR is updated. Returning from a task 

is accomplished with the IRET instruction which returns control to the task that was interrupted 

with the switch. The current task‟s segment is stored and the previous task‟s segment is used to 

bring it into the current task. 

Control Registers 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 186 
 

The 80386 has four "Control Registers" called CR0 through CR3. CR0 contains several bit flags 

as follows: 

PG – When set to 1, causes the translation of linear addresses to physical addresses. Indicates 

that paging is enabled and virtual memory is being used. 

ET – When set to 1, indicates that the 80387 math coprocessor is in use. 

TS – When set to 1, indicates that the processor has switched tasks. 

EM – When set to 1, causes a type 7 interrupt for the ESC (escape) instruction for the math 

coprocessor. 

MP – When set to 1, indicates that the math coprocessor is present in the system. 

PE – Selects protected mode of operation. 

CR 1 is not used by the „386. CR2 contains page fault linear addresses for the virtual memory 

manager. CR3 contains a pointer to the base of the page directory for virtual memory 

management. 

Switching to Protected Mode 

At reset, the 80386 begins operation in Real Mode. This is to allow setup of various conditions 

before the switch to Protected Mode is made. The actual switch is accomplished by setting the 

PE bit in CR0. The following steps are needed. 

1. Initialize the interrupt descriptor table to contain valid interrupt gates for at least the first 

32interrupt types. The IDT can contain 256 8-byte gates. 

2. Set up the GDT so that it contains a null descriptor at position 0, and valid descriptors for 

at least one code, one data, and one stack segment.  

3. Switch to protected mode by setting PE to 1. 

4.  Execute a near JMP to flush the internal instruction queue and to load the TR with the 

baseTSS descriptor. 

5.  Load all the data selectors with initial values. 

6. The processor is now running in Protected Mode using the given GDT and IDT. 

In the case of a multitasking system, an alternate approach is to load the GDT with at least two 

TSS descriptors in addition to the code and data descriptors needed for the first task. The first 

JMP following the setting of the PE bit will cause a task switch that loads all the data needed 

from the TSS of the first task to be entered. Multitasking is then initialized. 

VIRTUAL 8086 MODE 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 187 
 

The third mode of operation provided by the 80386 is that of Virtual 8086 Mode. Once in 

protected mode, one or more virtual 8086 tasks can be initiated. Virtual 8086 tasks appear to be 

like real mode. The task is limited to 1 megabyte of memory whose address space is located at 0 

through FFFFFh; the segment registers are used as they are in real mode (no selectors or lookup 

tables are involved). Each of the virtual 8086 tasks are given a certain amount of time using a 

timeslice algorithm typical of mainframes (timesharing). The software for such tasks is written as 

if they were to run in a real mode address space. However, using paging, multiple such sessions 

can be located anywhere in the virtual memory space of the 80386. Windows NT and OS/2 use 

this technique to support one or more DOS sessions, or low-priority utilities such as a print 

spooler. 

VIRTUAL MEMORY AND PAGING 

Using selectors and tables, the 80386 generates what Intel defines as a linear address as a means 

of locating data or instructions for real mode or for the current task in protected mode. If the 

system is not using virtual memory or paging, then the linear address is the physical address of 

the desired data or bytes, and is forwarded to the pins of the device to become the physical 

address. Paging allows a level of interpretation to be inserted between the linear address and the 

physical address. The linear address is passed to the paging unit, and it in turn converts it to a 

physical address that will be different than the linear one. This allows several options, including 

1) mapping a linear address to some other physical address according to the needs of a 

multitasking operating system to place tasks at convenient locations, or  

2) mapping linear addresses to memory that does not exist in the system, but might be replaced 

by disk space. Paging logically divides the available virtual space into "pages" that are 4Kbytes 

in size. Three elements are needed to implement paging. These are the page directory, the page 

table, and the actual physical memory page. Values in these tables are obtained by combining 

parts of the linear address with values from the tables which point to other values. 

The page directory is a table of as many as 1,024 4-byte entries. (This is a maximum number; 

most systems use far fewer entries.) The base of the page directory is determined by the value 

contained in CR3. An offset into the directory is created from the uppermost 10 bits (positions 

22-31) of the linear address. At this offset in the directory, we find a pointer to the base of a page 

table. This means that there can be as many as 1,024 page tables in a system. 

There are 1,024 entries possible in each page table. The middle 10 bits of the linear address (bit 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 188 
 

positions 12 through 21) are used as a offset into the selected page table. The value thus 

determined is a pointer to the base of a 4K memory page. The offset into the page to located the 

specific data needed is contained in the lower 12 bits of the linear address. The entries in the 

page directory and page tables are identical. They contain 10 bits of addressing, and the 

following flags: 

 D or DIRTY bit: This bit is not used in the page directory. In the page table entries, it 

indicates that the 4K area defined by this entry has been written to, and so must be saved 

(as to disk) if the area is to be reused for something else. 

 A or ACCESSED bit: This bit is set to a 1 when the processor accesses the 4K page. 

 R/W or Read/Write and U/S or User/Supervisor bits: These are used in conjunction with 

privilege management. 

 P or PRESENT bit: This bit when set to 1 indicates that the referenced page is present in 

memory. If 0, it can be used to indicate that the page is not in RAM, e.g., is on disk. 

Performance of the paging system would be affected if the system needed to reference memory 

tables each time a reference to RWM was made. To offset this, a Translation Lookaside Buffer 

(TLB) is provided. This is a 4-way set-associative cache that contains entries for the last 32 

pages needed by the processor. This provides immediate information about 98% of the time, 

causing only 2% of memory accesses to make the page directory-page table translation. 

HARDWARE HIGHLIGHTS 

The instructor will provide you with illustrations of the timing sequences for the various read and 

write cycles available on the 80386. There are two items of interest that we note here. 

Address Pipelining 

Under non-pipelined conditions, the bus signals of the „386 function very much like any other 

processor. A machine cycle consists of two T-states, T1 and T2. These are defined by the 

following edge of the system clock signal. At the beginning of T1, an address appears on the 

BE0# through BE3# and A2 through A31 lines, along with various control lines. The address is 

held valid until very near the end of T2. The ADS# line is pulled low (active) during T1 to 

indicate that the address bus contains a valid address; the ADS# line is pulled high (negated) 

during T2. The data is passed in or out at the transition between the end of T2 of the current 

cycle and the start of T1 of the following machine cycle. During this time, the NA# line is 

maintained high (negated). In pipelining, the address bits are available ½ machine cycle earlier 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 189 
 

than with no pipelining. The ADS# line is pulled low during T2 of a cycle rather than T1, 

indicating that during T2, the address of the data to be exchanged during the next machine cycle 

is available. Pipelining is initiated by the incoming line NA#, that is controlled by the memory 

subsystem. If pulled low during a T1, the memory expects that the address of the next bytes 

needed will be available ½ cycle early. The purpose of pipelining is to minimize the need for 

wait states. The time needed to read or write data remains the same. However, the time an 

address is available before the data is expected is lengthened so that a wait state may not be 

needed. The memory subsystem has to be designed to work within these parameters. 

Dynamic Bus Sizing 

Normally, the 80386 expects data to be transferred on a 32-bit wide data bus. However, it is 

possible to force the system to transfer 32-bit data as two 16-bit quantities in two successive bus 

cycles. This is initiated by the BS16# signal coming from the memory or I/O device subsystem. 

This line is pulled low during the middle of T2. It indicates to the processor that 32-bit data will 

be sent as two 16-bit words, with D0-D15 on the first transfer and D16-D31 on the second. The 

data is transferred on the D0-D15 bus lines; the D16-D31 lines are ignored. 

INSTRUCTION SET 

The instruction set of the 80386 is compatible with that of the 8086 and the programming for that 

processor can run on the „386 without modification. However, the „386 includes extension of the 

base instruction set to support 32-bit data processing and operation in protected mode. The 

reader is referred to the Intel documentation for full particulars on each instruction and its 

possible versions. Here we discuss the essential aspects of instruction organization. Instructions 

vary in length, depending upon how much information must be given for the instruction, the 

addressing modes used, and the location of data to be processed. The generic instruction contains 

the following: 

 BYTE 1: This is the operation (OP) code for the instruction. Bit position 0 may be 

interpreted as the "w" bit, where w=0 indicates byte mode and w=1 indicates word mode. 

Also, bit position 1 may be interpreted as the operation direction bit in double operand 

instructions as follows: 

 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 190 
 

d Direction of Operation 

0 

Register/Memory <- Register quot;reg" 

field indicates source operand "mod r/m" 

or "mod ss index base" indicates 

destination operand 

1 

Register <- Register/Memory "reg" field 

indicates destination operand "mod r/m" or 

"mod ss index base" indicates source 

operand 

 BYTE 2 (optional): This second byte of OP code may or may not be used depending on 

the operation.  

 BYTE 3: This is the "mod r/m" byte. Bits 3, 4, and 5 contain more OP code information. 

Bits 0, 1, and 2 contain the "r/m", or "register/memory" of the instruction. These identify 

which registers are in use or how the memory is addressed (the addressing mode). The 

r/m bits are interpreted depending upon the two "mod" or mode bits according to this 

chart:  

Mod r/m 16-bit Effective Address 32-bit Effective Address 

00 000 DS: [BX+SI] DS: [EAX] 

00 001 DS: [BX+DI] DS: [ECX] 

00 010 DS: [BP+SI] DS: [EDX] 

00 011 DS: [BP+DI] DS: [EBX] 

00 100 DS: [SI] sib byte is present 

00 101 DS: [DI] DS: d32 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 191 
 

00 110 DS: d16 DS: [ESI] 

00 111 DS: [BX] DS: [EDI] 

01 000 DS: [BX+SI+d8] DS: [EAX+d8] 

01 001 DS: [BX+DI+d8] DS: [ECX+d8] 

01 010 SS: [BP+SI+d8] DS: [EDX+d8] 

01 011 SS: [BP+DI+d8] DS: [EBX+d8] 

01 100 DS: [SI+d8] sib is present 

01 101 DS: [DI+d8] SS: [EBP+d8] 

01 110 SS: [BP+d8] DS: [ESI+d8] 

01 111 DS: [BX+d8] DS: [EDI+d8] 

10 000 DS: [BX+SI+d16] DS: [EAX+d32] 

10 001 DS: [BX+DI+d16] DS: [ECX+d32] 

10 010 SS: [BP+SI+d16] DS: [EDX+d32] 

10 011 SS: [BP+DI+d16] DS: [EBX+d32] 

10 100 DS: [SI+d16] sib is present 

10 101 DS: [DI+d16] SS: [EBP+d32] 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 192 
 

10 110 SS: [BP+d16] DS: [ESI+d32] 

10 111 DS: [BX+d16] DS: [EDI+d32] 

  16-Bit Reg, w=0 16-Bit Reg, w=1 32-Bit Reg, w=0 32-Bit Reg, w=1 

11 000 AL AX AL EAX 

11 001 CL CX CL ECX 

11 010 DL DX DL EDX 

11 011 BL BX BL EBX 

11 100 AH SP AH ESP 

11 101 CH BP CH EBP 

11 110 DH SI DH ESI 

11 111 BH DI BH EDI 

 BYTE 4 (optional): This is the "sib" byte and is not found in the 8086. It appears only in 

some 80386 instructions as needed. This byte supports the "scaled index" addressing 

mode. Bit positions 0-2 identify a general register to be used as a base value. Bit positions 

3-5 identify a general register which contains an index register. Bit positions 6 and 7 

identify a scaling factor to be used to multiply the value in the index register as follows: 

ss Scale Factor 

00 1 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 193 
 

01 2 

10 4 

11 8 

The index field of the sib byte is interpreted as follows:  

Index Index Register 

000 EAX 

001 ECX 

010 EDX 

011 EBX 

100 No index register used 

101 EBP 

110 ESI 

111 EDI 

The mod field of the mod r/m byte taken with the base value of the sib byte generates the 

following scaled indexing modes:  

Mod base Effective Address 

00 000 DS: [EAX + (scaled index)] 

00 001 DS: [ECX + (scaled index)] 

00 010 DS: [EDX + (scaled index)] 

00 011 DS: [EBX + (scaled index)] 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 194 
 

00 100 SS: [ESP + (scaled index)] 

00 101 DS: [d32 + (scaled index)] 

00 110 DS: [ESI + (scaled index)] 

00 111 DS: [EDI + (scaled index)] 

01 000 DS: [EAX + (scaled index) + d8] 

01 001 DS: [ECX + (scaled index) + d8] 

01 010 DS: [EDX + (scaled index) + d8] 

01 011 DS: [EBX + (scaled index) + d8] 

01 100 SS: [ESP + (scaled index) + d8] 

01 101 SS: [EBP + (scaled index) + d8] 

01 110 DS: [ESI + (scaled index) + d8] 

01 111 DS: [EDI + (scaled index) + d8] 

10 000 DS: [EAX + (scaled index) + d32] 

10 001 DS: [ECX + (scaled index) + d32] 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 195 
 

10 010 DS: [EDX + (scaled index) + d32] 

10 011 DS: [EBX + (scaled index) + d32] 

10 100 SS: [ESP + (scaled index) + d32] 

10 101 SS: [EBP + (scaled index) + d32] 

10 110 DS: [ESI + (scaled index) + d32] 

10 111 DS: [EDI + (scaled index) + d32] 

Following a possible byte 4, there may be 1, 2, or 4 bytes of address displacement which provide 

an absolute offset into the current segment for data location. Also following may be 1, 2, or 4 

bytes to implement immediate data.  

The byte and bit pattern of instructions vary. For instance, in conditional instructions a four-bit 

field called "tttn" implements the conditions to be tested:  

Mnemonic Condition tttn 

O Overflow 0000 

NO No Overflow 0001 

B/NAE Below/Not Above or Equal 0010 

NB/AE Not Below/Above or Equal 0011 

E/Z Equal/Zero 0100 

NE/NZ Not Equal/Not Zero 0101 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 196 
 

BE/NA Below or Equal/Not Above 0110 

NBE/A Not Below or Equal/Above 0111 

S Sign 1000 

NS Not Sign 1001 

P/PE Parity/Parity Even 1010 

NP/PO No Parity/Parity Odd 1011 

L/NGE Less Than/Not Greater or Equal 1100 

NL/GE Not Less Than/Greater or Equal 1101 

LE/NG Less Than or Equal/Not Greater Than 1110 

NLE/G Not Less Than or Equal/Greater Than 1111 

 

Pentium 

 

 

About the Pentium Architecture 

------------------------------ 

 

 -- It is not a load/store architecture. 

 

 -- The instruction set is huge!  We go over only a fraction of  the instruction set.  The text only 

presents a fraction. 

 

 -- There are lots of restrictions on how instructions/operands are  put together, but there is also 

an amazing amount of flexibility. 

 

 Registers 

 --------- 

    



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 197 
 

The Intel architectures as a set just do not have enough register  to satisfy most assembly 

language programmers.  Still, the processors    have been around for a LONG time, and they 

have a sufficient number of registers to do whatever is necessary. 

 

   For our (mostly) general purpose use, we get 

 

   32-bit      16-bit    8-bit             8-bit 

   (high part of 16) (low part of 16) 

 

    EAX         AX        AH                AL 

    EBX         BX        BH                BL 

    ECX         CX        CH                CL 

    EDX         DX        DH                DL 

 

    and 

 

    EBP         BP 

    ESI         SI 

    EDI         DI 

    ESP         SP 

 

 There are a few more, but we won't use or discuss them.  They  are only used for memory 

accessability in the segmented memory model. 

 

 

 Using the registers: 

 As an operand, just use the name (upper case and lower case both work interchangeably). 

 

     EBP is a frame pointer (see Chapter 11). 

     ESP is a stack pointer (see Chapter 11). 

 

 

Oddities: 

This is the only architecture that I know of where the programmer can designate part of a register 

as an operand.  On ALL other machines, the whole register is designated and used. 

 

 ONE MORE REGISTER: 

Many bits used for controlling the action of the processor and setting state are in the register 

called EFLAGS.  This register contains the condition codes: 

 

       OF  Overflow flag 

       SF  Sign flag 

       ZF  Zero flag 

       PF  Parity flag 

       CF  Carry flag 

 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 198 
 

     The settings of these flags are checked in conditional control  instructions.  Many instructions 

set one or more of the flags. 

     There are many other bits in the EFLAGS register 

 

     The use of the EFLAGS register is implied (rather than explicit) in instructions. 

 

 

 

 Accessing Memory 

 ---------------- 

 

 There are 2 memory models supported in the Pentium architecture. (Actually it is the 486 and 

more recent models that support 2 models.) 

 

 In both models, memory is accessed using an address.  It is the way that addresses are formed 

(within the processor) that differs  in the 2 models. 

 

 

 FLAT MEMORY MODEL 

 

  -- The memory model that we use.  AND, the memory model that every  other manufactures' 

processors also use. 

 

  --  

 

 SEGMENTED MEMORY MODEL 

 

  -- Different parts of a program are assumed to be in their own, set-aside portions of memory.  

These portions are called  segments. 

 

  -- An address is formed from 2 pieces:  a segment location and  an offset within a segment. 

 

Note that each of these pieces can be shorter (contain fewer bits) than a whole address.  This is 

much of the reason that Intel chose this form of memory model for its earliestsingle-chip 

processors. 

 

  -- There are segments for: 

        

       code 

       data 

       stack 

       other 

 

  -- Which segment something is in can be implied by the memory access involved.  An 

instruction fetch will always be lookingin the code segment. A push instruction  always accesses 

the stack segment. Etc. 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 199 
 

 Addressing Modes 

 ---------------- 

 

 Some would say that the Intel architectures only support 1 addressing mode.  It looks 

(something like) this: 

 

  effective address = base reg + (index reg x scaling factor) + displacement 

 

     where 

       base reg is EAX, EBX, ECX, EDX or ESP or EBP 

       index reg is EDI or ESI 

       scaling factor is 1, 2, 4, or 8 

 

  The syntax of using this (very general) addressing mode will vary from system to system.  It 

depends on the preprocessor  and the syntax accepted by the assembler. 

 

  For our implementation, an operand within an instruction that uses this addressing mode could 

look like   [EAX][EDI*2 + 80] 

The effective address calculated with be the contents of register EDI multiplied times 2 added to 

the constant 80, added to the contents of register EAX. 

   

  There are extremely few times where a high-level language compiler can utilize such a complex 

addressing mode.  It is  much more likely that simplified versions of this mode  will be used. 

 

 

  SOME ADDRESSING MODES 

 

  --  register mode -- 

    The operand is in a register.  The effective address is the register   

    Example instruction: 

 

      mov  eax, ecx 

 

      Both operands use register mode.  The contents of register ecx  is copied to register eax. 

 

 

  --  immediate mode -- 

    The operand is in the instruction.  The effective address is within  the instruction.   

 

    Example instruction: 

 

      mov  eax, 26 

 

      The second operand uses immediate mode.  Within the instruction is the operand. It is copied 

to register eax. 

 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 200 
 

  --  register direct mode -- 

    The effective address is in a register. 

 

    Example instruction: 

 

      mov  eax, [esp] 

 

      The second operand uses register direct mode.  The contents of  register esp is the effective 

address.  The contents of memoryat the effective address are copied into register eax. 

 

 

  --  direct mode -- 

    The effective address is in the instruction. 

 

    Example instruction: 

 

      mov  eax, var_name 

 

      The second operand uses direct mode.  The instruction contains  the effective address.  The 

contents of memory  at the effective address are copied into register eax. 

 

 

  --  base displacement mode -- 

    The effective address is the sum of a constant and the content   of a register. 

 

    Example instruction: 

 

      mov  eax, [esp + 4] 

 

 The second operand uses base displacement mode.  The instruction contains a constant.  That 

constant is added to the contents of register esp to form an effective address.  The contents of 

memory at the effective address are copied into register eax. 

 

  --  base-indexed mode --  (Intel's name) 

    The effective address is the sum of the contents of two registers. 

 

    Example instruction: 

 

      mov  eax, [esp][esi] 

 

 The contents of registers esp and esi are added to form a  effective address.  The contents of 

memory at the effective address are copied into register eax. 

 

  Note that there are restrictions on the combinations of registers  that can be used in this 

addressing mode. 

  --  PC relative mode -- 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 201 
 

    The effective address is the sum of the contents of the PC and a constant contained within the 

instruction. 

 

    Example instruction: 

 

      jmp  a_label 

 

 The contents of the program counter is added to an offset that  is within the machine code for the 

instruction.  The resultingsum is placed back into the program counter.  Note that from 

theassembly language it is not clear that a PC relative addressingmode is used.  It is the 

assembler that generates the offset  to place in the instruction. 

 

 

 Instruction Set 

 ---------------- 

 

Generalities: 

 -- Many (most?) of the instructions have exactly 2 operands. If there are 2 operands, then one of 

them will be required   to use register mode, and the other will have no restriction on its 

addressing mode. 

 -- There are most often ways of specifying the same instruction for 8-, 16-, or 32-bit oeprands.  I 

left out the 16-bit ones  to reduce presentation of the instruction set.  Note that  on a 32-bit 

machine, with newly written code, the 16-bit form  will never be used. 

 

 

Meanings of the operand specifications: 

   reg - register mode operand, 32-bit register 

   reg8 - register mode operand, 8-bit register 

   r/m - general addressing mode, 32-bit 

   r/m8 - general addressing mode, 8-bit 

   immed - 32-bit immediate is in the instruction 

   immed8 - 8-bit immediate is in the instruction 

   m - symbol (label) in the instruction is the effective address 

 

 

   Data Movement 

   ------------- 

 

      mov   reg, r/m                 ; copy data 

     r/m, reg 

     reg, immed 

     r/m, immed 

 

      movsx reg, r/m8                ; sign extend and copy data 

 

      movzx reg, r/m8                ; zero extend and copy data 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 202 
 

 

      lea   reg, m                   ; get effective address 

  (A newer instruction, so its format is much restricted  over the other ones.) 

 

   EXAMPLES: 

 

   mov EAX, 23  ; places 32-bit 2's complement immediate 23 into register EAX 

   movsx ECX, AL  ; sign extends the 8-bit quantity in register AL to 32 bits, and places 

it in ECX 

   mov [esp], -1  ; places value -1 into memory, address given by contents of esp 

   lea EBX, loop_top ; put the address assigned (by the assembler)  to label loop_top into 

register EBX 

 

 

   Integer Arithmetic 

   ------------------ 

 

      add   reg, r/m                 ; two's complement addition 

     r/m, reg 

     reg, immed 

     r/m, immed 

 

      inc   reg                      ; add 1 to operand 

            r/m 

 

      sub   reg, r/m                 ; two's complement subtraction 

     r/m, reg 

     reg, immed 

     r/m, immed 

 

      dec   reg                      ; subtract 1 from operand 

            r/m 

 

      neg   r/m                      ; get additive inverse of operand 

 

      mul   eax, r/m                 ; unsigned multiplication 

                                     ; edx||eax <- eax * r/m 

 

      imul   r/m                     ; 2's comp. multiplication 

                                     ; edx||eax <- eax * r/m 

             reg, r/m                ; reg <- reg * r/m 

             reg, immed              ; reg <- reg * immed 

 

      div   r/m                      ; unsigned division 

         ; does edx||eax / r/m 

         ; eax <- quotient 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 203 
 

         ; edx <- remainder 

 

      idiv   r/m                     ; 2's complement division 

         ; does edx||eax / r/m 

         ; eax <- quotient 

         ; edx <- remainder 

 

      cmp   reg, r/m                 ; sets EFLAGS based on  

            r/m, immed               ; second operand - first operand 

            r/m8, immed8  

            r/m, immed8              ; sign extends immed8 before subtract  

 

 

 

  EXAMPLES: 

 

 neg [eax + 4]    ; takes doubleword at address eax+4 and finds its additive inverse, then places 

  the additive inverse back at that address  the instruction should probably be 

  neg  dword ptr [eax + 4] 

 

  inc ecx          ; adds one to contents of register ecx, andresult goes back to ecx 

 

 

   Logical 

   ------- 

 

      not   r/m                     ; logical not 

 

      and   reg, r/m                ; logical and 

            reg8, r/m8 

     r/m, reg 

            r/m8, reg8 

     r/m, immed 

     r/m8, immed8 

 

      or    reg, r/m                ; logical or 

            reg8, r/m8 

     r/m, reg 

            r/m8, reg8 

     r/m, immed 

     r/m8, immed8 

 

      xor   reg, r/m                ; logical exclusive or 

            reg8, r/m8 

     r/m, reg 

            r/m8, reg8 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 204 
 

     r/m, immed 

     r/m8, immed8 

 

      test  r/m, reg                ; logical and to set EFLAGS 

            r/m8, reg8 

     r/m, immed 

     r/m8, immed8 

 

 

 

         EXAMPLES: 

 

and edx, 00330000h   ; logical and of contents of register edx (bitwise) with 0x00330000, 

   result goes back to edx 

 

 

 

 

   Floating Point Arithmetic 

   ------------------------- 

Since the newer architectures have room for floating point  hardware on chip, Intel defined a 

simple-to-implement extension to the architecture to do floating point arithmetic. In their usual 

zeal, they have included MANY instructions to do floating point operations. 

 

   The mechanism is simple.  A set of 8 registers are organizedand maintained (by hardware) as a 

stack of floating point values.  ST refers to the stack top.  ST(1) refers to the  register within the 

stack that is next to ST.  ST and ST(0) are synonyms. 

 

   There are separate instructions to test and compare the values of floating point variables. 

 

 

      finit                         ; initialize the FPU 

 

      fld   m32                     ; load floating point value 

            m64  

            ST(i) 

 

      fldz                          ; load floating point value 0.0 

 

      fst   m32                     ; store floating point value 

            m64  

            ST(i) 

 

      fstp  m32                     ; store floating point value 

            m64                     ;   and pop ST 

            ST(i) 



Microprocessor                                                                                                                                   10EC62 
 

Dept of ECE,SJBIT Page 205 
 

 

      fadd  m32                     ; floating point addition 

            m64 

            ST, ST(i) 

            ST(i), ST 

 

      faddp ST(i), ST               ; floating point addition 

                                    ;   and pop ST 

 

 

 

   I/O 

   --- 

   The only instructions which actually allow the reading and writing of I/O devices are 

priviledged.  The OS must handle  these things.  But, in writing programs that do something  

useful, we need input and output.  Therefore, there are some  simple macros defined to help us 

do I/O. 

 

   These are used just like instructions. 

 

      put_ch  r/m           ; print character in the least significant 

       ;   byte of 32-bit operand 

 

      get_ch  r/m           ; character will be in AL 

 

      put_str m             ; print null terminated string given 

       ; by label m 

 

 

   Control Instructions 

   -------------------- 

   These are the same control instructions that all started with the character 'b' in SASM. 

 

      jmp   m               ; unconditional jump 

      jg    m               ; jump if greater than 0 

      jge   m               ; jump if greater than or equal to 0 

      jl    m               ; jump if less than 0 

      jle   m               ; jump if less than or equal to 0 

 


