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UNIT - 1 

BASIC CONCEPTS 

1.1 Pointers and Dynamic Memory Allocation 

Pointers to data significantly improve performance for repetitive operations such as traversing  strings, 

lookup tables,  control tables and  tree structures. In particular, it is often much cheaper in time and space 

to copy and dereference pointers than it is to copy and access the data to which the pointers point.Pointers 

are also used to hold the addresses of entry points for  called subroutines in  procedural programming and 

for run-time linking to dynamic link libraries (DLLs).  In object-oriented programming, pointers to 

functions are used for  binding methods, often using what are called virtual method tables. 

 

Declaring a pointer variable is quite similar to declaring an normal variable all you have to do is to insert 

a star '*' operator before it. 

 

General form of pointer declaration is - 

 

type* name; 

 

where type represent the type to which pointer thinks it is pointing to. 

 

Pointers to machine defined as well as user-defined types can be made 

 

Pointer Intialization: variable_type *pointer_name = 0; 

 

or 

 

variable_type *pointer_name = NULL; 

 

char *pointer_name = "string value here"; 

1.2 Algorithm Specification 
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A pragmatic approach to algorithm specification and verification is presented. The language AL provides 

a  level of  abstraction between  a mathematical specification notation and programming language, 

supporting compact but expressive algorithm description. 

 

Proofs of correctness about algorithms written in AL can be done via an embedding of the semantics of 

the language  in a  proof system; implementations  of algorithms can  be done through translation  to 

standard programming languages. 

 

The proofs of correctness are more tractable than direct verification of programming language code; 

descriptions  in AL  are more easily related to  executable programs than standard mathematical 

specifications. AL provides an independent, portable description which can be related to different proof 

systems and different programming languages. 

 

Several interfaces have been explored and tools for fully automatic translation of AL specifications into 

the HOL logic and Standard ML executable code have been implemented. A substantial case study uses 

AL as the common specification language from which both the formal proofs of correctness and 

executable code have been produced. 

1.3 Data Abstraction 

Abstraction is the process by which  data and  programs are defined with a  representation similar to its 

meaning (semantics), while hiding away the  implementation details. Abstraction tries to reduce and factor 

out details so that the  programmer can focus on a few concepts at a time. A system can have several 

abstraction layers whereby different meanings and amounts of detail are exposed to the programmer. For 

example,  low-level abstraction layers expose details of the  hardware where the program is  run, while 

high-level layers deal with the  business logic of the program. 

1.4 Performance Analysis 

Performance analysis involves gathering formal and informal data to help customers and sponsors define 

and achieve their goals. Performance analysis uncovers several perspectives on a problem or opportunity, 

determining any and all drivers towards or barriers to successful performance, and proposing a solution 

system based on what is discovered. 
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A lighter definition is: 

Performance analysis is the front end of the front end. It's what we do to figure out what to do. Some 

synonyms are planning, scoping, auditing, and diagnostics. 

What does a performance analyst do? 

Here's a list of some of the things you may be doing as part of a performance analysis: 

 Interviewing a sponsor 

 Reading the annual report 

 Chatting at lunch with a group of customer service representatives 

 Reading the organization's policy on customer service, focusing particularly on the recognition 

and incentive aspects 

 Listening to audiotapes associates with customer service complaints 

 Leading a focus group with supervisors 

 Interviewing some randomly drawn representatives 

 Reviewing the call log 

 Reading an article in a professional journal on the subject of customer service performance 

improvement 

 Chatting at the supermarket with somebody who is a customer, who wants to tell you about her 

experience with customer service 

We distinguish three basic steps in the performance analysis process: 

 data collection, 

 data transformation, and 

 data visualization. 

Data collection is the process by which data about program performance are obtained from an executing 

program. Data are normally collected in a file, either during or after execution, although in some 

situations it may be presented to the user in real time. 

1.5 Performance Measurement 

‗When you can measure what you are speaking about and express it in numbers, you know something 

about it‘. 

‗You cannot manage what you cannot measure‘. 
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These are two often-quoted statements that demonstrate why measurement is important. Yet it is 

surprising that organisations find the area of measurement so difficult to manage. 

In the cycle of never-ending improvement, performance measurement plays an important role in: 

• Identifying and tracking progress against organisational goals 

• Identifying opportunities for improvement 

• Comparing performance against both internal and external standards 

Reviewing the performance of an organisation is also an important step when formulating the direction of 

the strategic activities. It is important to know where the strengths and weaknesses of the organisation lie, 

and as part of the ‗Plan –Do – Check – Act‘ cycle, measurement plays a key role in quality and 

productivity improvement activities. The main reasons it is needed are: 

• To ensure customer requirements have been met 

• To be able to set sensible objectives and comply with them 

• To provide standards for establishing comparisons 

• To provide visibility and a ―scoreboard‖ for people to monitor their own performance level 

• To highlight quality problems and determine areas for priority attention 

• To provide feedback for driving the improvement effort 

It is also important to understand the impact of TQM on improvements in business performance, on 

sustaining current performance and reducing any possible decline in performance. 
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UNIT - 2 

ARRAYS and STRUCTURES 

2.1 Arrays 

2.2 Dynamically Allocated Arrays 

2.3 Structures and Unions 

2.4 Polynomials 

2.5 Sparse Matrices 

2.6 Representation of Multidimensional Arrays 
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UNIT - 2 

ARRAYS and STRUCTURES 

2.1 Arrays 

Definition :Array by definition is a variable that hold multiple elements which has the same data type. 

 

Declaring Arrays : 

 

We can declare an array by specify its data type, name and the number of elements the array holds 

between square brackets immediately following the array name. Here is the syntax: 

 

1       x    data_type array_name[size]; 

 

For example, to declare an integer array which contains 100 elements we can do as follows: 

 

1       x    int a[100]; 

 

There are some rules on array declaration. The data type can be any valid C data types including structure 

and union. The array name has to follow the rule of variable and the size of array has to be a positive 

constant integer.We can access array elements via indexes array_name[index]. Indexes of array starts 

from 0 not 1 so the highest elements of an array is array_name[size-1] 

 

Initializing Arrays  : 

 

It is like a variable, an array can be initialized. To initialize an array, you provide initializing values which 

are enclosed within curly braces in the declaration and placed following an equals sign after the array 

name. Here is an example of initializing an integer array. 

 

int list[5] = {2,1,3,7,8}; 
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structure ARRAY(value, index) 

declare CREATE( )array 

RETRIEVE(array,index) value 

STORE(array,index,value) array; 

for all A array, i,j 

index, x value let 

RETRIEVE(CREATE,i) :: = error 

RETRIEVE(STORE(A,i,x),j) :: = 

if EQUAL(i,j) then x else RETRIEVE(A,j) 

end 

end ARRAY 

 

To allocate a one-dimensional array of length N of some particular type, simply use malloc to allocate 

enough memory to hold N elements of the particular type, and then use the resulting pointer as if it were 

an array. For example, the following code snippet allocates a block of N ints, and then, using array 

notation, fills it with the values 0 through N-1: 

 

int *A = malloc (sizeof (int) * N); 

 

int i; 

for (i = 0; i < N; i++) 

A[i] = i; 

 

This idea is very useful for dealing with strings, which in C are represented by arrays of chars, terminated 

with a '\0' character. These arrays are nearly always expressed as pointers in the declaration of functions, 

but accessed via C's array notation. For example, here is a function that implements strlen: 

 



DATASTRUCTURES WITH C                                                                                                        10CS35 

 

Dept. of CSE, SJBIT Page 12 

  

int strlen (char *s){ 

int i; 

for (i = 0; s[i] != '\0'; i++) 

return (i) } 

 

2.2 Dynamically Allocated Arrays 

array is a pointer-to-pointer-to-int: at the first level, it points to a block of pointers, one for each row. 

That first-level pointer is the first one we allocate; it has n rows elements, with each element big enough 

to hold a pointer-to-int, or int *. If we successfully allocate it, we then fill in the pointers (all n rows of 

them) with a pointer (also obtained from malloc) to n columns number of ints, the storage for that row 

of the array. If this isn't quite making sense, a picture should make everything clear: 

 

 

 

Fig1: representation of array 

 

Once we've done this, we can (just as for the one-dimensional case) use array-like syntax to access our 

simulated multidimensional array. If we write 

 

array[i][j] 

 

The i'th pointer pointed to by array, and then for the j'th int pointed to by that inner pointer. (This is a 

pretty nice result: although some completely different machinery, involving two levels of  pointer 

dereferencing,  is going  on behind the scenes, the simulated, dynamically-allocated two- dimensional 
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``array'' can still be accessed just as if it were an array of arrays, i.e. with the same pair of bracketed 

subscripts.). 

 

2.3 Structures and Unions 

 

Structure 

A structure is a user-defined data type. You have the ability to define a new type of data considerably 

more complex than the types we have been using. A structure is a collection of one or more variables, 

possibly of different types, grouped together under a single name for convenient handling. Structures are 

called ―records‖ in some languages, notably Pascal. Structures help organize complicated data. 

struct {field_list} variable_identifier; 

struct struct_name 

{ 

type1 fieldname1; 

type2 fieldname2; 

. 

. 

. 

typeN fieldnameN; 

}; 

struct struct_name variables; 

The above format shown is not concrete and can vary, so different ` 

flavours of structure declaration is as shown. 

struct 

{ 

…. 

} variable_identifer; 

Example 

struct mob_equip; 
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{ 

long int IMEI; 

char rel_date[10]; 

char model[10]; 

char brand[15]; 

}; 

Accessing a structure 

A structure variable or a tag name of a structure can be used to access the members of a structure with the 

help of a special operator ‗.‘ –also called as member operator . In our previous example To access the idea 

of the IMEI of the mobile equipment in the structure mob_equip is done like this Since the structure 

variable can be treated as a normal variable All the IO functions for a normal variable holds good for the 

structure variable also with slight. The scanf statement to read the input to the IMEI is given below 

scanf (―%d‖,&m1.IMEI); 

Increment and decrement operation are same as the normal variables this includes postfix and prefix also. 

Member operator has more precedence than the increment or decrement. Say suppose in example quoted 

earlier we want count of student then 

m1.count++; ++m1.count 

Unions 

Unions are very similar to structures, whatever discussed so far holds good for unions also then why dowe 

need unions? Size of unions depends on the size of its member of largest type or member with largest 

size, but this is not son in case of structures. 

Example union abc1 

{ 

int a; 

float b; 

char c;}; 

2.4 Polynomials 

Polynomials appear in a wide variety of areas of mathematics and science. For example, they are used to 

form polynomial equations, which encode a wide range of problems, from elementary word problems to 
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complicated problems in the sciences; they are used to define polynomial functions, which appear in 

settings ranging from basic chemistry and physics to economics and social science; they are used in 

calculus and numerical analysis to approximate other functions. In advanced mathematics, polynomials 

are used to construct polynomial rings, a central concept in abstract algebra and algebraic geometry. 

Polynomial comes form poly- (meaning "many") and -nomial (in this case meaning "term") ... so it says 

"many terms" 

A polynomial can have: 

constants (like 3, -20, or ½) 

variables (like x and y) 

exponents (like the 2 in y2) but only 0, 1, 2, 3, ... etc 

That can be combined using: 

+ addition, 

- subtraction, and 

× Multiplication 

These are polynomials: 

3x 

x - 2 

-6y2 - (7/9)x 

3xyz + 3xy2z - 0.1xz - 200y + 0.5 

512v5+ 99w5 

1 

 

 

2.5 Sparse Matrices 

A sparse matrix is a matrix that allows special techniques to take advantage of the large number of zero 

elements. This definition helps to define "how many" zeros a matrix needs in order to be "sparse." The 

answer is that it depends on what the structure of the matrix is, and what you want to do with it. For 

example, a randomly generated sparse matrix with entries scattered randomly throughout the matrix is not 

sparse in the sense of Wilkinson. 
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Creating a sparse matrix: 

If a matrix A is stored in ordinary (dense) format, then the command S = sparse(A) creates a copy of the 

matrix stored in sparse format. For example: 

>> A = [0 0 1;1 0 2;0 -3 0] 

A = 

0 0 1 

1 0 2 

0 -3 0 

>> S = sparse(A) 

S = 

(2,1) 1 

(3,2) -3 

(1,3) 1 

(2,3) 2 

2.6 Representation of Multidimensional Arrays 

For a two-dimensional array, the element with indices i,j would have address B + c · i + d · j, where the 

coefficients c and d are the row and column address increments, respectively. 

More generally, in a k-dimensional array, the address of an element with indices i1, i2, …, ik is 

B + c1 · i1 + c2 · i2 + … + ck · ik 

This formula requires only k multiplications and k−1 additions, for any array that can fit in memory. 

Moreover, if any coefficient is a fixed power of 2, the multiplication can be replaced by bit shifting. 

The coefficients ck must be chosen so that every valid index tuple maps to the address of a distinct 

element. If the minimum legal value for every index is 0, then B is the address of the element whose 

indices are all zero. As in the one-dimensional case, the element indices may be changed by changing the 

base address B. Thus, if a two-dimensional array has rows and columns indexed from 1 to 10 and 1 to 20, 

respectively, then replacing B by B + c1 - − 3 c1 will cause them to be renumbered from 0 through 9 and 

4 through 23, respectively. Taking advantage of this feature, some languages (like FORTRAN 77) specify 

that array indices begin at 1, as in mathematical tradition; while other languages (like Fortran 90, Pascal 

and Algol) let the user choose the minimum value for each index. 
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Compact layouts 

There are two systematic compact layouts for a two-dimensional array. For example, consider the matrix 

In the row-major order layout (adopted by C for statically declared arrays), the elements of each row are 

stored in consecutive positions: 

In Column-major order (traditionally used by Fortran), the elements of each column are consecutive in 

memory: 

For arrays with three or more indices, "row major order" puts in consecutive positions any two elements 

whose index tuples differ only by one in the last index. "Column major order" is analogous with respect to 

the first index. In systems which use processor cache or virtual memory, scanning an array is much faster 

if successive elements are stored in consecutive positions in memory, rather than sparsely scattered. Many 

algorithms that use multidimensional arrays will scan them in a predictable order. A programmer (or a 

sophisticated compiler) may use this information to choose between row- or column-major layout for each 

array. For example, when computing the product A•B of two matrices, it would be best to have A stored 

in row-major order, and B in column-major order. 

The Representation of Multidimensional Arrays: 

 N-dimension, A[M0][M2]. . .[Mn-1] 

Address of any entry A[i0][i1]...[in-1] 
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UNIT - 3 

STACKS AND QUEUES 

3.1 Stacks 

3.2 Stacks Using Dynamic Arrays 

3.3 Queues, Circular Queues Using Dynamic Arrays 

3.4 Evaluation of Expressions 

3.5 Multiple Stacks and Queues. 

  



DATASTRUCTURES WITH C                                                                                                        10CS35 

 

Dept. of CSE, SJBIT Page 19 

  

UNIT - 3 

STACKS AND QUEUES 

3.1 Stacks 

A stack is an ordered collection of items into which new items may be inserted and from which items may 

be deleted at one end, called the top of the stack. A stack is a dynamic, constantly changing object as the 

definition of the stack provides for the insertion and deletion of items. It has single end of the stack as top 

of the stack, where both insertion and deletion of the elements takes place. The last element inserted into 

the stack is the first element deleted-last in first out list (LIFO). After several insertions and deletions, it 

is possible to have the same frame again. 

Primitive Operations 

When an item is added to a stack, it is pushed onto the stack. When an item is removed, it is popped from 

the stack. 

Given a stack s, and an item i, performing the operation push(s,i) adds an item i to the top of stack s. 

push(s, H); 

push(s, I); 

push(s, J); 

Operation pop(s) removes the top element. That is, if i=pop(s), then the removed element is assigned to i. 

pop(s); 

Because of the push operation which adds elements to a stack, a stack is sometimes called a pushdown 

list. Conceptually, there is no upper limit on the number of items that may be kept in a stack. If a stack 

contains a single item and the stack is popped, the resulting stack contains no items and is called the 

empty stack. Push operation is applicable to any stack. Pop operation cannot be applied to the empty 

stack. If so, underflow happens. A Boolean operation empty(s), returns TRUE if stack is empty. Otherwise 

FALSE, if stack is not empty. 

Representing stacks in C 

Before programming a problem solution that uses a stack, we must decide how to represent the stack in a 

programming language. It is an ordered collection of items. In C, we have ARRAY as an ordered 

collection of items. But a stack and an array are two different things. The number of elements in an array 
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is fixed. A stack is a dynamic object whose size is constantly changing. So, an array can be declared large 

enough for the maximum size of the stack. A stack in C is declared as a structure containing two objects: 

• An array to hold the elements of the stack. 

• An integer to indicate the position of the current stack top within the array. 

#define STACKSIZE 100 

struct stack { 

int top; 

int items[STACKSIZE]; 

}; 

The stack s may be declared by struct stack s; 

The stack items may be int, float, char, etc. The empty stack contains no elements and can therefore be 

indicated by top= -1. To initialize a stack S to the empty state, we may initially execute 

s.top= -1. 

To determine stack empty condition, 

if (s.top=-1) 

stack empty; 

else 

stack is not empty; 

The empty(s) may be considered as follows: 

int empty(struct stack *ps) 

{ 

if(ps->top== -1) 

return(TRUE); 

else 

return(FALSE); 

} 

Implementing pop operation 

If the stack is empty, print a warning message and halt execution. Remove the top element from the stack. 

Return this element to the calling program 
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int pop(struct stack *ps) 

{ 

if(empty(ps)){ 

printf(―%‖,‖stack underflow‖); 

exit(1); 

} 

return(ps->items[ps->top--]); 

} 

3.2 Stacks Using Dynamic Arrays 

 

For example: 

Typedef struct 

{ 

char *str; 

} words; 

main() 

{ 

words x[100];  

comesin. 

} 

For example here is the following array in which read individual words from a .txt file and save them 

word by word in the array: 

Code: 

char words[1000][15]; 

Here 1000 defines the number of words the array can save and each word may comprise of not more than 

15 characters. Now the program should dynamically allocate the memory for the number of words it 

counts. For example, a .txt file may contain words greater that 1000. The program should count the 

number of words and allocate the memory accordingly. Since we cannot use a variable in place of [1000] 

3.3 Queues 
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A queue is like a line of people waiting for a bank teller. The queue has a front and a rear. 

When we talk of queues we talk about two distinct ends: the front and the rear. Additions to the queue 

take place at the rear. Deletions are made from the front. So, if a job is submitted for execution, it joins at 

the rear of the job queue. The job at the front of the queue is the next one to be executed 

• New people must enter the queue at the rear. push, although it is usually called an enqueue operation. 

• When an item is taken from the queue, it always comes from the front. pop, although it is usually called 

a dequeue operation. 

 

Queue Operations 

• Queue Overflow 

• Insertion of the element into the queue 

• Queue underflow 

• Deletion of the element from the queue 

• Display of the queue 

Program for queue operations 

struct Queue { 

int que [size]; 

int front; 

int rear; 

}Q; 

Example: 

#include <stdio.h> 

#include <stdlib.h> 

#include <conio.h> 

#define size 5 

struct queue { 

int que[size]; 

int front, rear; 

} Q; 
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Example: 

#include <stdio.h> 

#include <stdlib.h> 

#include <conio.h> 

#define size 5 

struct queue { 

int que[size]; 

int front, rear; 

} Q; 

int Qfull ( ){ 

if (Q.rear >= size-1) 

return 1; 

else 

return 0; 

} 

int Qempty( ){ 

if ((Q.front == -1)||(Q.front > Q.rear)) 

return 1; 

else 

return 0; 

} 

int insert (int item) { 

if (Q.front == -1) 

Q.front++; 

Q.que[++Q.rear] = item; 

return Q.rear; 

} 

Int delete () { 

Int item; 
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Item = Q.que[Q.front]; 

Q.front++; 

Return Q.front; 

} 

Void display () { 

Int I; 

For (i=Q.front;i<=Q.rear;i++) 

Printf(― %d‖,Q.que[i]); 

} 

Void main (void) { 

Int choice, item; 

Q.front = -1; Q.Rear = -1; 

do { 

Printf(―Enter your choice : 1:I, 2:D, 3:Display‖); 

Scanf(―%d‖, &choice); 

Switch(choice){ 

Case 1: if(Qfull()) printf(―Cannt Insert‖); 

else scanf(―%d‖,item); insert(item); break; 

Case 2: if(Qempty()) printf(―Underflow‖); 

else delete(); break; 

} 

} 

} 

3.4 Circular Queues Using Dynamic Arrays 

Circular Queue 

• When an element moves past the end of a circular array, it wraps around to the beginning. A more 

efficient queue representation is obtained by regarding the array Q(1:n) as circular. It now becomes more 

convenient to declare the array as Q(0:n - 1). When rear = n - 1, the next element is entered at Q(0) in case 

that spot is free. Using the same conventions as before, front will always point one position 
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counterclockwise from the first element in the queue. Again, front = rear if and only if the queue is 

empty. Initially we have front = rear = 1. Figure 3.4 illustrates some of the possible configurations for a 

circular queue containing the four elements J1-J4 with n > 4. The assumption of circularity changes the 

ADD and DELETE algorithms slightly. In order to add an element, it will be necessary to move rear one 

position clockwise, i.e., 

 

Queue Full Condition: 

 

if(front == (rear+1)%size) Queue is Full 

 

• Where do we insert: 

 

rear = (rear + 1)%size; queue[rear]=item; 

 

After deletion : front = (front+1)%size; 

 

Example of a Circular Queue 

 

• A Circular Q, the size of which is 5 has three elements 20, 40, and 60 where front is 0 and rear is 2. What 

are the values of after each of these operations: 

Q = 20, 40, 60, - , - front–20[0], rear–60[2] 

Insert item 50: 

Q = 20, 40, 60, 50, - front-20[0], rear-50[3] 

Insert item 10: 

Q = 20, 40, 60, 50, 10 front-20[0], rear-10[4] 

Q = 20, 40, 60, 50, 10 front-20[0], rear-10[4] 

Insert 30 

Rear = (rear + 1)%size = (4+1)%5 = 0, hence overflow. 
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Delete an item 

delete 20, front = (front+1)%size = (0+1)%5=1 

Delete an item 

delete 40, front = (front+1)%size = (1+1)&5=2 

Insert 30 at position 0 

Rear = (rear + 1)%size = (4+1)%5 = 0 

Similarly Insert 80 at position 1 

 

 

3.5 Evaluation of Expressions 

When pioneering computer scientists conceived the idea of higher level programming languages, they 

were faced with many technical hurdles. One of the biggest was the question of how to generate machine 

language instructions which would properly evaluate any arithmetic expression. A complex assignment 

statement such as X A/B ** C + D* E - A * C  might have several meanings; and even if it were uniquely 

defined, say by a full use of parentheses, it still seemed a formidable task to generate a correct and 

reasonable instruction sequence. Fortunately the solution we have today is both elegant and simple. 

Moreover, it is so simple that this aspect of compiler writing is really one of the more minor issues. An 

expression is made up of operands, operators and delimiters. The expression above has five operands: 

A,B,C,D, and E. Though these are all one letter variables, operands can be any legal variable name or 

constant in our programming language. In any expression the values that variables take must be consistent 

with the operations performed on them. These operations are described by the operators. In most 

programming languages there are several kinds of operators which correspond to the different kinds of 

data a variable can hold. First, there are the basic arithmetic operators: plus, minus, times, divide, and 

exponentiation (+,-,*,/,**). Other arithmetic operators include unary plus, unary minus and mod, ceil, and 

floor. The latter three may sometimes be library subroutines rather than predefined operators. A second 

class are the relational operators: . These are usually defined to work for arithmetic operands, but they can 

just as easily work for character string data. ('CAT' is less than 'DOG' since it precedes 'DOG' in 

alphabetical order.) The result of an expression which contains relational operators is one of the two 
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constants: true or false. Such all expression is called Boolean, named after the mathematician George 

Boole, the father of symbolic logic. 

The first problem with understanding the meaning of an expression is to decide in what order the 

operations are carried out. This means that every language must uniquely define such an order. For 

instance, if A = 4, B = C = 2, D = E = 3, then in eq. 3.1 we might want X to be assigned the value 

4/(2 ** 2) + (3 * 3) - (4 * 2) 

= (4/4) + 9 - 8 

= 2. 

Let us now consider an example. Suppose that we are asked to evaluate the following postfix expression: 

6 2 3 + - 3 8 2 / + * 2 $ 3 + 

Symb Opnd1 Opnd2 Value opndstk 

6 6 

2 6,2 

3 6,2,3 

+ 2 3 5 6,5 

- 6 5 1 1 

3 6 5 1 1,3 

8 6 5 1 1,3,8 

2 6 5 1 1,3,8,2 

/ 8 2 4 1,3,4 

8 

+ 3 4 7 1,7 

* 1 7 7 7 

2 1 7 7 7,2 

$ 7 2 49 49 

3 7 2 49 49,3 

+ 49 3 52 52 

Program to evaluate postfix expression 

Along with push, pop, empty operations, we have eval, isdigit and oper operations. 



DATASTRUCTURES WITH C                                                                                                        10CS35 

 

Dept. of CSE, SJBIT Page 28 

  

eval – the evaluation algorithm 

double eval(char expr[]) 

{ 

int c, position; 

double opnd1, opnd2, value; 

struct stack opndstk; 

opndstk.top=-1; 

for (position=0 ;( c=expr [position])!=‘\0‘; position++) 

if (isdigit) 

push (&opndstk, (double) (c-‗0‘)); 

else{ 

opnd2=pop (&opndstk); 

9 

opnd1=pop (&opndstk); 

value=oper(c, opnd1,opnd2); 

push (&opndstk. value); 

} 

return(pop(&opndstk)); 

} 

isdigit – called by eval, to determine whether or not its argument is an operand 

int isdigit(char symb) 

{ 

return(symb>=‘0‘ && symb<=‘9‘); 

} 

oper – to implement the operation corresponding to an operator symbol 

double oper(int symb, double op1, double op2) 

{ 

switch (symb){ 

case ‗+‘ : return (op1+op2); 
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case ‗-‗ : return (op1-op2); 

case ‗*‘ : return (op1*op2); 

case ‗/‘ : return(op1/op2); 

case ‗$‘ : return (pow (op1, op2); 

default: printf (―%s‖,‖illegal operation‖); 

exit(1); 

} 

} 

Converting an expression from infix to postfix 

Consider the given parentheses free infix expression: 

A + B * C 

Symb Postfix string opstk 

1 A A 

2 + A + 

3 B AB + 

4 * AB + * 

5 C ABC + * 

6 ABC * + 

7 ABC * + 

Consider the given parentheses infix expression: 

(A+B)*C 

Symb Postfix string Opstk 

1 ( ( 

2 A A ( 

3 + A ( + 

4 B AB ( + 

5 ) AB+ 

6 * AB+ * 

7 C AB+C * 
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8 AB+C* 

Program to convert an expression from infix to postfix 

Along with pop, push, empty, popandtest, we also make use of additional functions such as, isoperand, 

prcd, postfix. 

isoperand – returns TRUE if its argument is an operand and FALSE otherwise 

prcd – accepts two operator symbols as arguments and returns TRUE if the first has precedence over the 

second when it appears to the left of the second in an infix string and FALSE otherwise 

postfix – prints the postfix string 

3.6 Multiple Stacks and Queues. 

Up to now we have been concerned only with the representation of a single stack or a single queue in the 

memory of a computer. For these two cases we have seen efficient sequential data representations. What 

happens when a data representation is needed for several stacks and queues? Let us once again limit 

ourselves, to sequential mappings of these data objects into an array V(1:m). If we have only 2 stacks to 

represent. then the solution is simple. We can use V(1) for the bottom most element in stack 1 and V(m) 

for the corresponding element in stack 2. Stack 1 can grow towards V(m) and stack 2 towards V(1). It is 

therefore possible to utilize efficiently all the available space. Can we do the same when more than 2 

stacks are to be represented? The answer is no, because a one dimensional array has only two fixed points 

V(1) and V(m) and each stack requires a fixed point for its bottommost element. When more than two 

stacks, say n, are to be represented sequentially, we can initially divide out the available memory V(1:m) 

into n segments and allocate one of these segments to each of the n stacks. This initial division of V(1:m) 

into segments may be done in proportion to expected sizes of the various stacks if the sizes are known. In 

the absence of such information, V(1:m) may be divided into equal segments. For each stack i we shall 

use B(i) to represent a position one less than the position in V for the bottommost element of that stack. 

T(i), 1 i n will point to the topmost element of stack i. We shall use the boundary condition B(i) = T(i) iff 

the i'th stack is empty. If we grow the i'th stack in lower memory indexes than the i + 1'st, then with 

roughly equal initial segments we have 

B (i) = T (i) = m/n (i - 1), 1 i n ---- (3.2) 
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as the initial values of B(i) and T(i), (see figure 3.9). Stack i, 1 i n can grow from B(i) + 1 up to B(i + 1) 

before it catches up with the i + 1'st stack. It is convenient both for the discussion and the algorithms to 

define B(n + 1) = m. Using this scheme the add and delete algorithms become: 

procedure ADD(i,X) 

//add element X to the i'th stack, i n// 

 if T(i) = B(i + 1) then call STACK-FULL (i) 

T(i) T(i) + 1 

 V(T(i)) X 

 //add X to the i'th stack// 

end ADD 

procedure DELETE(i,X) 

 

//delete topmost element of stack i// 

if T(i) = B(i) then call STACK-EMPTY(i) 

X  V(T(i)) T(i) T(i) - 1 end DELETE 

 

The algorithms to add and delete appear to be a simple as in the case of only 1 or 2 stacks. This really is 

not the case since the STACK_FULL condition in algorithm ADD does not imply that all m locations of 

V are in use. In fact, there may be a lot of unused space between stacks j and j + 1 for 1 j n and j i. The 

procedure STACK_FULL (i) should therefore determine whether there is any free space in V and shift 

stacks around so as to make some of this free space available to the i'th stack. 

 

Several strategies are possible for the design of algorithm STACK_FULL. We shall discuss one strategy 

in the text and look at some others in the exercises. The primary objective of algorithm STACK_FULL is 

to permit the adding of elements to stacks so long as there is some free space in V. One way to guarantee 

this is to design STACK_FULL along the following lines: 

 

a) determine the least j, i < j n such that there is free space between stacks j and j + 1, i.e., T(j) < B(j + 1). 
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If there is such a j, then move stacks i + 1, i + 2, ...,j one position to the right (treating V(1) as leftmost and 

V(m) as rightmost), thereby creating a space between stacks i and i + 1. 

 

b) if there is no j as in a), then look to the left of stack i. Find the largest j such that 1 j < i and there is 

space between stacks j and j + 1, i.e., T(j) < B(j + 1). If there is such a j, then move stacks j + 1, j + 2, ...,i 

one space left creating a free space between stacks i and i + 1. 

 

c) if there is no j satisfying either the conditions of a) or b), then all m spaces of V are utilized and there is 

no free space. 

 

It should be clear that the worst case performance of this representation for the n stacks together with the 

above strategy for STACK_FULL would be rather poor. In fact, in the worst case O(m) time may be 

needed for each insertion (see exercises). In the next chapter we shall see that if we do not limit ourselves 

to sequential mappings of data objects into arrays, then we can obtain a data representation for m stacks 

that has a much better worst case performance than the representation described here. 
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4.5 Additional List operations 

4.6 Sparse Matrices 

4.7 Doubly Linked Lists 
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UNIT - 4 

LINKED LISTS 

4.1 Singly Linked lists and Chains 

Drawbacks of stacks and queues. During implementation, overflow occurs. No simple solution exists for 

more stacks and queues. In a sequential representation, the items of stack or queue are implicitly ordered 

by the sequential order of storage. 

If the items of stack or queue are explicitly ordered, that is, each item contained within itself the address 

of the next item. Then a new data structure known as linear linked list. Each item in the list is called a 

node and contains two fields, an information field and a next address field. The information field holds the 

actual element on the list. The next address field contains the address of the next node in the list. Such an 

address, which is used to access a particular node, is known as a pointer.The null pointer is used to signal 

the end of a list. The list with no nodes – empty listor null list. The notations used in algorithms 

are:If p is a pointer to a node, node(p) refers to the node pointed to by p. 

 

Singly linked list 

Singly linked lists contain nodes which have a data field as well as a next field, which points to the next 

node in line of nodes. 

 

A singly linked list whose nodes contain two fields: an integer value and a link to the next node 

Doubly linked list 

Main article: Doubly linked list 

In a doubly linked list, each node contains, besides the next-node link, a second link field pointing to 

the previous node in the sequence. The two links may be calledforward(s) and backwards, 

or next and prev(previous). 

 

A doubly linked list whose nodes contain three fields: an integer value, the link forward to the next node, 

and the link backward to the previous node 

http://en.wikipedia.org/wiki/Doubly_linked_list
http://en.wikipedia.org/wiki/File:Singly-linked-list.svg
http://en.wikipedia.org/wiki/File:Doubly-linked-list.svg
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A technique known as XOR-linking allows a doubly linked list to be implemented using a single link field 

in each node. However, this technique requires the ability to do bit operations on addresses, and therefore 

may not be available in some high-level language 

 

information portion of the node that follows node(p) inthe list. 

 

A linked list (or more clearly, "singly linked list") is a  data structure that consists of a sequence of  nodes 

each of which contains a  reference (i.e., a link) to the next node in the sequence. 

 

 

 

 

 

A linked list whose nodes contain two fields: an integer value and a link to the next node 

 

Linked lists are among the simplest and most common data structures. They can be used to implement 

several other common abstract data structures, including  stacks,  queues, associative arrays, and  symbolic 

expressions, though it is not uncommon to implement the other data structures directly without using a list 

as the basis of implementation. 

 

The principal benefit of a linked list over a conventional  array is that the list elements can easily be added 

or removed without reallocation or reorganization of the entire structure because the data items need not 

be stored contiguously in memory or on disk. Linked lists allow insertion and removal of nodes at any 

point in the list, and can do so with a constant number of operations if the link previous to the link being 

added or removed is maintained during list traversal. 

http://en.wikipedia.org/wiki/XOR_linked_list
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On the other hand, simple linked lists by themselves do not allow  random access to the data other than the 

first node's data, or any form of efficient indexing 

 

 

 

 

 

 

 

A list is a dynamic data structure. The number of nodes on a list may vary dramatically and dynamically as 

elements are inserted and removed. For example, let us consider a list with elements 5, 3 and 8 and we need 

to add an integer 6 to the frontof that list. Then, 

p=getnode(); 

info(p)=6; 

next(p)=list; 

list=p; 

Similarly, for removing an element from the list, the process is almost exactly opposite of the process to add 

a node to the front of the list. Remove the first node of a nonempty list and store the value of info field 

into a variable x. then, 

p=list; 

list=next(p); 

x=info(p); 

 

4.2 Representing Chains in C 

A chain is a linked list in which each node represents one element. 
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x    There is a link or pointer from one element to the next. 

x     The last node has a NULL (or 0) pointer 

 

An array and a sequential mapping is used to represent simple data structures in the previous chapters 

 

•This representation has the property that successive nodes of the data object are stored a fixed 

distance apart 

(1) If the element aijis stored at location Lij, then aij+1is at the location Lij+1 

(2) If the i-thelement in a queue is at location Li, then the (i+1)-th element is at location Li+1% n for the 

circular representation 

 

(3) If the topmost node of a stack is at location LT , then the node beneath it is at location LT-1, and so on 

 

•When a sequential mapping is used for ordered lists, operations such as insertion and deletion of 

arbitrary elements become expensive. 

 

In a linked representation–To access list elements in the correct order, with each element we store the 

address or location of the next element in the list–A linked list is comprised of nodes; each node has zero or 

more data fields and one or more link or pointer fields. 

 

4.3 Linked Stacks and Queues 

 

Pushing a Linked Stack 

 

Error code Stack :: push(const Stack entry &item) 

/* Post: Stack entry item is added to the top of the Stack; returns success or 

returns a code of over_ow if dynamic memory is exhausted. */ 
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{ 

Node *new top = new Node(item, top node); 

if (new top == NULL) return over_ow; 

top node = new top; 

return success; 

} 

 

Popping a Linked Stack 

 

Error code Stack :: pop( ) 

/* Post: The top of the Stack is removed. If the Stack is empty the method returns 

under_ow; otherwise it returns success. */ 

{ 

Node *old top = top node; 

if (top node == NULL) return under_ow; 

top node = old top->next; 

delete old top; 

return success; 

} 

A queue is a particular kind of  collection in which the entities in the collection are kept in order and the 

principal (or only) operations on the collection are the addition of entities to the rear terminal position and 

removal of entities from the front terminal position. This makes the queue a  First-In-First-Out (FIFO) 

data structure. In a FIFO data structure, the first element added to the queue will be the first one to be 

removed. This is equivalent to the requirement that once an element is added, all elements that were 

added before have to be removed before the new element can be invoked. A queue is an example of a 

linear data structure. 

 

Queues provide services,  transport, and  operations research where various entities such as data, objects, 



DATASTRUCTURES WITH C                                                                                                        10CS35 

 

Dept. of CSE, SJBIT Page 39 

  

persons, or events are stored and held to be processed later. In these contexts, the queue performs the 

function of a buffer. 

 

#include<malloc.h> 

#include<stdio.h> structnode{ intvalue; structnode*next; 

}; 

 

voidInit(structnode*n){ 

n->next=NULL; 

} voidEnqueue(structnode*root,intvalue){ structnode*j=(structnode*)malloc(sizeof(structnode)); j-

>value=value; 

j->next=NULL; 

structnode*temp                                                                                                                                              ; 

temp=root; 

while(temp->next!=NULL) 

{ 

temp=temp->next; 

} 

temp->next=j; 

printf(―Value Enqueued is : %d\n‖,value); 

 

} 

voidDequeue(structnode*root) 

{ 

if(root->next==NULL) 

{ 

printf(―NoElementtoDequeue\n‖); 
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} 

else 

{ structnode*temp; temp=root->next; 

root->next=temp->next; printf(―ValueDequeuedis%d\n‖,temp->value); free(temp); 

} 

} 

voidmain() 

{structnodesample_queue; Init(&sample_queue); Enqueue(&sample_queue,10); 

Enqueue(&sample_queue,50); Enqueue(&sample_queue,570); Enqueue(&sample_queue,5710); 

Dequeue(&sample_queue); Dequeue(&sample_queue); Dequeue(&sample_queue); 

} 

 

4.4 Polynomials 

A polynomial (from Greek poly, "many" and medieval Latin binomium, "binomial") is an expression of finite 

length constructed from variables (also known as indeterminates) and constants, using only the operations of 

addition, subtraction, multiplication, and non-negative integer exponents. For example, x2 − 4x + 7 is a 

polynomial, but x2 − 4/x + 7x3/2 is not, because its second term involves division by the variable x (4/x) and 

because its third term contains an exponent that is not a whole number (3/2). The term "polynomial" can also 

be used as an adjective, for quantities that can be expressed as a polynomial of some parameter, as in 

"polynomial time" which is used in computational complexity theory. 

Polynomials appear in a wide variety of areas of mathematics and science. For example, they are used to 

form polynomial equations, which encode a wide range of problems, from elementary word problems to 

complicated problems in the sciences. 

A polynomial is a mathematical expression involving a sum of powers in one or more variables multiplied by 

coefficients.  

 

4.5 Additional List operations 

It is often necessary and desirable to build a variety of routines for manipulating singly linked lists. Some 

that we have already seen are: 1) INIT which originally links together the AV list; 2) GETNODE and 3) RET 
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which get and return nodes to AV. Another useful operation is one which inverts a chain. This routine is 

especially interesting because it can be done "in place" if we make use of 3 pointers. 

//a chain pointed at by X is inverted so that if X = (a1, ...,am) 

then after execution X = (am, ...,a1)// 

p X;q 0 

while p 0 do 

r q;q p //r follows q; q follows p// 

p LINK(p) //p moves to next node// 

LINK(q) r //link q to previous node// 

end 

X q 

end INVERT 

The reader should try this algorithm out on at least 3 examples: the empty list, and lists of length 1 and 2 to 

convince himself that he understands the mechanism. For a list of m 1 nodes, the while loop is executed m 

times and so the computing time is linear or O(m). 

Another useful subroutine is one which concatenates two chains X and Y. 

procedure CONCATENATE(X, Y, Z) 

//X = (a1, ...,am), Y = (b1, ...,bn), m,n 0, produces a new chain 

Z = (a1, ...,am,b1 , ...,bn)// 

Z X 

if X = 0 then [Z Y; return] 

if Y = 0 then return 

p X 

while LINK(p) 0 do //find last node of X// 

p LINK(p) 

end 

LINK(p) Y //link last node of X to Y// 

end CONCATENATE 
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This algorithm is also linear in the length of the first list. From an aesthetic point of view it is nicer to write 

this procedure using the case statement in SPARKS. This would look like: 

procedure CONCATENATE(X, Y, Z) 

case 

: X = 0 :Z Y 

: Y = 0 : Z X 

: else : p X; Z X 

while LINK(p) 0 do 

p LINK (p) 

end 

LINK(p) Y 

end 

end CONCATENATE 

Suppose we want to insert a new node at the front of this list. We have to change the LINK field of the node 

containing x3. This requires that we move down the entire length of A until we find the last node. It is more 

convenient if the name of a circular list points to the last node rather than the first. 

Now we can write procedures which insert a node at the front or at the rear of a circular list and take a fixed 

amount of time. 

procedure INSERT__FRONT(A, X) 

//insert the node pointed at by X to the front of the circular list 

A, where A points to the last node// 

if A = 0 then [A X 

LINK (X) A] 

else [LINK(X) LINK (A) 

LINK(A) X] 

end INSERT--FRONT 

To insert X at the rear, one only needs to add the additional statement A X to the else clause of INSERT_- 

_FRONT. 
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As a last example of a simple procedure for circular lists, we write a function which determines the length of 

such a list. 

procedure LENGTH(A) 

//find the length of the circular list A// 

i 0 

if A 0 then [ptr A 

repeat 

i i + 1; ptr LINK(ptr) 

until ptr = A ] 

return (i) 

end LENGTH 

4.6 Sparse Matrices 

A sparse matrix is a matrix populated primarily with zeros (Stoer & Bulirsch 2002, p. 619). The term itself 

was coined by Harry M. Markowitz. 

Conceptually, sparsity corresponds to systems which are loosely coupled. Consider a line of balls connected 

by springs from one to the next; this is a sparse system. By contrast, if the same line of balls had springs 

connecting each ball to all other balls, the system would be represented by a dense matrix. The concept of 

sparsity is useful in combinatorics and application areas such as network theory, which have a low density of 

significant data or connections. 

A sparse matrix is a matrix that allows special techniques to take advantage of the large number of zero 

elements. This definition helps to define "how many" zeros a matrix needs in order to be "sparse." The 

answer is that it depends on what the structure of the matrix is, and what you want to do with it. For example, 

a randomly generated sparse matrix with entries scattered randomly throughout the matrix is not sparse in the 

sense of Wilkinson (for direct methods) since it takes . 

Creating a sparse matrix 

If a matrix A is stored in ordinary (dense) format, then the command S = sparse(A) creates a copy of the 

matrix stored in sparse format. For example: 

>> A = [0 0 1;1 0 2;0 -3 0] 

A = 
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0 0 1 

1 0 2 

0 -3 0 

>> S = sparse(A) 

S = 

(2,1) 1 

(3,2) -3 

(1,3) 1 

(2,3) 2 

>> whos 

Name Size Bytes Class 

A 3x3 72 double array 

S 3x3 64 sparse array 

Grand total is 13 elements using 136 bytes 

Unfortunately, this form of the sparse command is not particularly useful, since if A is large, it can be very 

time-consuming to first create it in dense format. The command S = sparse(m,n) creates an zero matrix in 

sparse format. Entries can then be added one-by-one: 

>> A = sparse(3,2) 

A = 

All zero sparse: 3-by-2 

>> A(1,2)=1; 

>> A(3,1)=4; 

>> A(3,2)=-1; 

>> A 

A = 

(3,1) 4 

(1,2) 1 

(3,2) -1 
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4.7 Doubly Linked Lists 

Although a circularly linked list has advantages over linear lists, it still has some drawbacks. One cannot 

traverse such a list backward. Double-linked lists require more space per node , and their elementary 

operations are more expensive; but they are often easier to manipulate because they allow sequential access 

to the list in both directions. In particular, one can insert or delete a node in a constant number of operations 

given only that node's address. (Compared with singly-linked lists, which require the previous node's address 

in order to correctly insert or delete.) Some algorithms require access in both directions. 

On the other hand, they do not allow tail-sharing, and cannot be used as persistent data structures. 

Operations on Doubly Linked Lists 

One operation that can be performed on doubly linked list but not on ordinary linked list is to delete a given 

node. The following c routine deletes the node pointed by pfrom a doubly linked list and stores its contents 

in x. It is called by delete( p). 

delete( p ) 

{ 

NODEPTR p, q, r; 

int *px; 

if ( p = = NULL ) 

{ 

printf(― Void Deletion \n‖); 

return; 

} 

*px = p -> info; 

q = p -> left; 

r = p -> right; 

q -> right = r; 

r -> left = q; 

freenode( p ); 

return; 

} 
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A node can be inserted on the right or on the left of a given node. Let us consider insertion at right side of a 

given node. The routine insert right inserts a node with information field x to right of node(p) in a doubly 

linked list. 

insertright( p, x) { 

NODEPTR p, q, r; 

int x; 

if ( p = = NULL ) { 

printf(― Void Insertion \n‖); 

return; 

} 

q = getnode(); 

q -> info = x; 

r = p -> right; 

r -> left = q; 

q -> right = r; 

q -> left = p; 

p -> left = q; 

return; 

} 
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5.4 Threaded Binary Trees 

5.5 Heaps. 
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UNIT - 5 

TREES – 1 

5.1 Introduction 

A tree is a finite set of one or more nodes such that: (i) there is a specially designated node called the root; 

(ii) the remaining nodes are partitioned into n 0 disjoint sets T1, ...,Tn where each of these sets is a 

tree. T1, ...,Tn are called the subtrees of the root. A tree structure means that the data is organized so that 

items of information are related by branches. One very common place where such a structure arises is in 

the investigation of genealogies. 

AbstractDataType tree{ 

instances 

A set of elements: 

(1) empty or having a distinguished root element 

(2) each non-root element having exactly one parent element operations 

root() 

degree() 

child(k) 

} 

Some basic terminology for trees: 

 Trees are formed from nodes and edges. Nodes are sometimes called vertices. Edges are sometimes 

called branches. 

 Nodes may have a number of properties including value and label. 

 Edges are used to relate nodes to each other. In a tree, this relation is called "parenthood." 

 An edge {a,b} between nodes a and b establishes a as the parent of b. Also, b is called a child. 

Although edges are usually drawn as simple lines, they are really directed from parent to child. In tree 

drawings, this is top-to-bottom. 

Informal Definition: a tree is a collection of nodes, one of which is distinguished as "root," along with a 

relation ("parenthood") that is shown by edges. 

Formal Definition: This definition is "recursive" in that it defines tree in terms of itself. The definition is 

also "constructive" in that it describes how to construct a tree. 
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1. A single node is a tree. It is "root." 

2. Suppose N is a node and T1, T2, ..., Tk are trees with roots n1, n2, ...,nk, respectively. We can construct a 

new tree T by making N the parent of the nodes n1, n2, ..., nk. Then, N is the root of T and T1, T2, ..., Tk are 

subtrees. 

 

More terminology 

 A node is either internal or it is a leaf. 

 A leaf is a node that has no children. 

 Every node in a tree (except root) has exactly one parent. 

 The degree of a node is the number of children it has. 

 The degree of a tree is the maximum degree of all of its nodes. 

Paths and Levels 

Definition: A path is a sequence of nodes n1, n2, ..., nk such that node ni is the parent of node ni+1 for all 1 

<= i <= k. 

Definition: The length of a path is the number of edges on the path (one less than the number of nodes). 

Definition: The descendents of a node are all the nodes that are on some path from the node to any leaf. 

Definition: The ancestors of a node are all the nodes that are on the path from the node to the root. 

Definition: The depth of a node is the length of the path from root to the node. The depth of a node is 

sometimes called its level. 

Definition: The height of a node is the length of the longest path from the node to a leaf. 

Definition: the height of a tree is the height of its root. 
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In the example above: 

 The nodes Y, Z, U, V, and W are leaf nodes. 

 The nodes R, S, T, and X are internal nodes. 

 The degree of node T is 3. The degree of node S is 1. 

 The depth of node X is 2. The depth of node Z is 3. 

 The height of node Z is zero. The height of node S is 2. The height of node R is 3. 

 The height of the tree is the same as the height of its root R. Therefore the height of the tree is 3. 

 The sequence of nodes R,S,X is a path. 

 The sequence of nodes R,X,Y is not a path because the sequence does not satisfy the 

 "parenthood" property (R is not the parent of X). 

 

5.2 Binary Trees 

Definition: A binary tree is a tree in which each node has degree of exactly 2 and the children of each node 

are distinguished as "left" and "right." Some of the children of a node may be empty. 

Formal Definition: A binary tree is: 

1. either empty, or 

2. it is a node that has a left and a right subtree, each of which is a binary tree. 

Definition: A full binary tree (FBT) is a binary tree in which each node has exactly 2 non-empty children or 

exactly two empty children, and all the leaves are on the same level. (Note that this definition differs from 

the text definition). 

Definition: A complete binary tree (CBT) is a FBT except, perhaps, that the deepest level may not be 

completely filled. If not completely filled, it is filled from left-to-right. 

 A FBT is a CBT, but not vice-versa. 
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Examples of Binary Trees 

 

 

 

 

 

5.3 Binary Tree Traversals 

There are many operations that we often want to perform on trees. One notion that arises frequently is the 

idea of traversing a tree or visiting each node in the tree exactly once. A full traversal produces a linear order 

for the information in a tree. This linear order may be familiar and useful. When traversing a binary tree we 
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want to treat each node and its subtrees in the same fashion. If we let L, D, R stand for moving left, printing 

the data, and moving right when at a node then there are six possible combinations of traversal: LDR, LRD, 

DLR, DRL, RDL, and RLD. If we adopt the convention that we traverse left before right then only three 

traversals remain: LDR, LRD and DLR. To these we assign the names inorder, postorder and preorder 

because there is a natural correspondence between these traversals and producing the infix, postfix and prefix 

forms of an expression. 

Level order 

 

x := root() 

if( x ) queue (x) 

while( queue not empty ){ 

x := dequeue() 

visit() 

i=1; while( i <= degree() ){ 

queue( child(i) ) 

} 

} 

Preorder 

 

 

procedure preorder(x){ 

visit(x) 

i=1; while( i <= degree() ){ 

preorder( child(i) ) 

} 
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} 

Postorder 

 

 

 

 

procedure postorder(x){ 

i=1; while( i <= degree() ){ 

postorder( child(i) ) 

} 

visit(x) 

} 

Inorder 

Meaningful just for binary trees. 

procedure inorder(x){ 

if( left_child_for(x) ) { inorder( left_child(x) ) } 

visit(x) 

if( right_child_for(x) ) { inorder( right_child(x) ) } 

} 

 

5.4 Threaded Binary Trees 

If we look carefully at the linked representation of any binary tree, we notice that there are more null links 

than actual pointers. As we saw before, there are n + 1 null links and 2n total links. A clever way to make 

use of these null links has been devised by A. J. Perlis and C. Thornton. Their idea is to replace the null 

links by pointers, called threads, to other nodes in the tree. If the RCHILD(P) is normally equal to zero, 

we will replace it by a pointer to the node which would be printed after P when traversing the tree in 

inorder. A null LCHILD link at node P is replaced by a pointer to the node which immediately precedes 
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node P in inorder. 

The tree T has 9 nodes and 10 null links which have been replaced by threads. If we traverse T in inorder 

the nodes will be visited in the order H D I B E A F C G. For example node E has a predecessor thread 

which points to B and a successor thread which points to A. 

In the memory representation we must be able to distinguish between threads and normal pointers. This is 

done by adding two extra one bit fields LBIT and RBIT. 

LBIT(P) =1 if LCHILD(P) is a normal pointer 

LBIT(P) = 0 if LCHILD(P) is a thread 

RBIT(P) = 1 if RCHILD(P) is a normal pointer 

RBIT(P) = 0 if RCHILD(P) is a thread 

 

5.5 Heaps. 

A heap is a complete tree with an ordering-relation R holding between each node and its descendant. 

Examples for R: smaller-than, bigger-than 

Assumption: In what follows, R is the relation ‗bigger-than‘, and the trees have degree 2. 

 

1. Add a node to the tree 

 

 

2. Move the elements in the path from the root to the new node one position down, if they are smaller than 

the new element 
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3. Insert the new element to the vacant node 

 

 

4. A complete tree of n nodes has depth log n , hence the time complexity is O(log n) 

Deleting an Element 

1. Delete the value from the root node, and delete the last node while saving its value. 

 

 

2. As long as the saved value is smaller than a child of the vacant node, move up into the vacant node the 

largest value of the children. 

 

3. Insert the saved value into the vacant node 

 



DATASTRUCTURES WITH C                                                                                                        10CS35 

 

Dept. of CSE, SJBIT Page 56 

  

4. The time complexity is O(log n) 

Initialization: 

Brute Force 

Given a sequence of n values e1, ..., en, repeatedly use the insertion module on the n given values. 

 Level h in a complete tree has at most 2h-1 = O(2n) elements 

 Levels 1, ..., h - 1 have 20 + 21 + + 2h-2 = O(2h) elements 

 Each element requires O(log n) time. Hence, brute force initialization requires O(n log n) time. 

Efficient 

Insert the n elements e1, ..., en into a complete tree 

 

For each node, starting from the last one and ending at the root, reorganize into a heap the subtree whose root 

node is given. The reorganization is performed by interchanging the new element with the child of greater 

value, until the new element is greater than its children. 
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UNIT – 6 

TREES – 2, GRAPHS 

6.1 Binary Search Trees 

6.2 Selection Trees 

6.3 Forests, Representation of Disjoint Sets 

6.4 Counting Binary Trees 

6.5 The Graph Abstract Data Type. 
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UNIT – 6 

TREES – 2, GRAPHS 

6.1 Binary Search Trees 

Introduction 

The first recorded evidence of the use of graphs dates back to 1736 when Euler used them to solve the now 

classical Koenigsberg bridge problem.Some of the applications of graphs are: analysis of electrical circuits, 

finding shortest routes, analysis of project planning, identification of chemical compounds, statistical 

mechanics, genetics, cybernetics, linguistics, social sciences, etc. Indeed, it might well be said that of all 

mathematical structures, graphs are the most widely used. 

 

Definitions and Terminology 

A graph, G, consists of two sets V and E. V is a finite non-empty set of vertices. E is a set of pairs of vertices, 

these pairs are called edges. V(G) and E(G) will represent the sets of vertices and edges of graph 

G. 

We will also write G = (V,E) to represent a graph. 

In an undirected graph the pair of vertices representing any edge is unordered . Thus, the pairs (v1, v2) and 

(v2, v1) represent the same edge. 

In a directed graph each edge is represented by a directed pair (v1, v2). v1 is the tail and v2 the head of the 

edge. Therefore <v2, v1> and <v1, v2> represent two different edges. Figure 6.2 shows three graphs G1, G2 

and G3. 
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The graphs G1 and G2 are undirected. G3 is a directed graph. 

V (G1) = {1,2,3,4}; E(G1) = {(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)} 

V (G2) = {1,2,3,4,5,6,7}; E(G2) = {(1,2),(1,3),(2,4),(2,5),(3,6),(3,7)} 

V (G3) = {1,2,3}; E(G3) = {<1,2>, <2,1>, <2,3>}. 

Note that the edges of a directed graph are drawn with an arrow from the tail to the head. The graph G2 is 

also a tree while the graphs G1 and G3 are not. Trees can be defined as a special case of graphs, In addition, 

since E(G) is a set, a graph may not have multiple occurrences of the same edge. When this restriction is 

removed from a graph, the resulting data object is referred to as a multigraph. The data object of figure 6.3 is 

a multigraph which is not a graph. 

The number of distinct unordered pairs (vi,vj) with vi vj in a graph with n vertices is n(n - 1)/2. This is the 

maximum number of edges in any n vertex undirected graph. 

An n vertex undirected graph with exactly n(n - 1)/2 edges is said to be complete. G1 is the complete graph 

on 4 vertices while G2 and G3 are not complete graphs. In the case of a directed graph on n vertices the 

maximum number of edges is n(n - 1). 

If (v1,v2) is an edge in E(G), then we shall say the vertices v1 and v2 are adjacent and that the edge (v1,v2) is 

incident on vertices v1 and v2. The vertices adjacent to vertex 2 in G2 are 4, 5 and 1. The edges incident on 

vertex 3 in G2 are (1,3), (3,6) and (3,7). If <v1,v2> is a directed edge, then vertex v1 will be said to be 

adjacent to v2 while v2 is adjacent from v1. The edge <v1,v2> is incident to v1 and v2. In G3 the edges 

incident to vertex 2 are <1,2>, <2,1> and <2,3>. 

 

6.2 Selection Trees 

A subgraph of G is a graph G' such that V(G') V(G) and E(G') E(G). Figure 6.4 shows some of 

the subgraphs of G1 and G3. 
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A path from vertex vp to vertex vq in graph G is a sequence of vertices vp,vi1,vi2, ...,vin,vq such that 

(vp,vi1),(vi1,vi2), ...,(vin,vq) are edges in E(G). If G' is directed then the path consists of <vp,vi1>,<vi,vi2>, 

...,<vin,vq>, edges in E(G'). 

A simple path is a path in which all vertices except possibly the first and last are distinct. A path such as 

(1,2) (2,4) (4,3) we write as 1,2,4,3. Paths 1,2,4,3 and 1,2,4,2 are both of length 3 in G1. The first is a simple 

path while the second is not. 1,2,3 is a simple directed path in G3. 1,2,3,2 is not a path in G3 as the edge 

<3,2> is not in E(G3). 

A cycle is a simple path in which the first and last vertices are the same. 1,2,3,1 is a cycle in G1. 1,2,1 is a 

cycle in G3. For the case of directed graphs we normally add on the prefix "directed" to the terms cycle and 

path. 

In an undirected graph, G, two vertices v1 and v2 are said to be connected if there is a path in G from v1 to 

v2 (since G is undirected, this means there must also be a path from v2 to v1). An undirected graph is said to 

be connected if for every pair of distinct vertices vi, vi in V(G) there is a path from vi to vj in G. 

Graphs G1 and G2 are connected while G4 of figure 6.5 is not. 

A connected component or simply a component of an undirected graph is a maximal connected subgraph. 

G4 has two components H1 and H2. A tree is a connected acyclic (i.e., has no cycles) graph . A directed 

graph G is said to be strongly connected if for every pair of distinct vertices vi, vj in V(G) there is a directed 

path from vi to vj and also from vj to vi. The graph G3 is not strongly connected as there is no path from v3 

to v2. 

A strongly connected component is a maximal subgraph that is strongly connected. G3 has two strongly 

connected components. 
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A selection tree is a complete binary tree in which the leaf nodes hold a set of keys, and each internal node 

holds the ―winner‖ key among its children. 

Modifying a Key 

It takes O(log n) time to modify a selection tree in response to a change of a key in a leaf. 

 

Initialization 

The construction of a selection tree from scratch takes O(n) time by traversing it level-wise from bottom up. 
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The algorithm takes time to internally sort the elements of the chunks, O(M) to initialize the selection tree, 

and O(n log M) to perform the selection sort. For M « n the total time complexity is O(n log n).To reduce I/O 

operations, inputs from the chunks to the selection tree should go through buffers. 

6.3 Forests 

The default interdomain trust relationships are created by the system during domain controller creation. 
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The number of trust relationships that are required to connect n domains is n –1, whether the domains are 

linked in a single, contiguous parent-child hierarchy or they constitute two or more separate contiguous 

parent-child hierarchies. 

When it is necessary for domains in the same organization to have different namespaces, create a separate 

tree for each namespace. In Windows 2000, the roots of trees are linked automatically by two-way, transitive 

trust relationships. Trees linked by trust relationships form a forest A single tree that is related to no other 

trees constitutes a forest of one tree. 

The tree structures for the entire Windows 2000 forest are stored in Active Directory in the form of parent-

child and tree-root relationships. These relationships are stored as trust account objects (class trustedDomain 

) in the System container within a specific domain directory partition. For each domain in a forest, 

information about its connection to a parent domain (or, in the case of a tree root, to another tree root 

domain) is added to the configuration data that is replicated to every domain in the forest. Therefore, every 

domain controller in the forest has knowledge of the tree structure for the entire forest, including knowledge 

of the links between trees.  

6.4 Representation of Disjoint Sets 

Set 

In computer science, a set is an abstract data structure that can store certain values, without any particular 

order, and no repeated values. It is a computer implementation of the mathematical concept of a finite set. 

Some set data structures are designed for static sets that do not change with time, and allow only query 

operations — such as checking whether a given value is in the set, or enumerating the values in some 

arbitrary order. Other variants, called dynamic or mutable sets, allow also the insertion and/or deletion of 

elements from the set. 

A set can be implemented in many ways. For example, one can use a list, ignoring the order of the elements 

and taking care to avoid repeated values. Sets are often implemented using various flavors of trees, tries, 

hash tables, and more. 

A set can be seen, and implemented, as a (partial) associative array, in which the value of each key-value 

pair has the unit type. In type theory, sets are generally identified with their indicator function: accordingly, a 

set of values of type may be denoted by or (Subtypes and subsets may be modeled by refinement types, and 

quotient sets may be replaced by setoids.) 
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Operations 

Typical operations that may be provided by a static set structure S are 

• element_of(x,S): checks whether the value x is in the set S. 

• empty(S): checks whether the set S is empty. 

• size(S): returns the number of elements in S. 

• enumerate(S): yields the elements of S in some arbitrary order. 

• pick(S): returns an arbitrary element of S. 

• build(x1,x2,…,xn,): creates a set structure with values x1,x2,…,xn. 

The enumerate operation may return a list of all the elements, or an iterator, a procedure object that returns 

one more value of S at each call. 

Dynamic set structures typically add: 

• create(n): creates a new set structure, initially empty but capable of holding up to n elements. 

• add(S,x): adds the element x to S, if it is not there already. 

• delete(S,x): removes the element x from S, if it is there. 

• capacity(S): returns the maximum number of values that S can hold. 

Some set structures may allow only some of these operations. The cost of each operation will depend on the 

implementation, and possibly also on the particular values stored in the set, and the order in which they are 

inserted. There are many other operations that can (in principle) be defined in terms of the above, such as: 

• pop(S): returns an arbitrary element of S, deleting it from S. 

• find(S, P): returns an element of S that satisfies a given predicate P. 

• clear(S): delete all elements of S. 

In particular, one may define the Boolean operations of set theory: 

• union(S,T): returns the union of sets S and T. 

• intersection(S,T): returns the intersection of sets S and T. 

• difference(S,T): returns the difference of sets S and T. 

• subset(S,T): a predicate that tests whether the set S is a subset of set T. 

Other operations can be defined for sets with elements of a special type: 

• sum(S): returns the sum of all elements of S (for some definition of "sum"). 

• nearest(S,x): returns the element of S that is closest in value to x (by some criterion). 
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In theory, many other abstract data structures can be viewed as set structures with additional operations 

and/or additional axioms imposed on the standard operations. For example, an abstract heap can be viewed 

as a set structure with a min(S) operation that returns the element of smallest value. 

Implementations 

Sets can be implemented using various data structures, which provide different time and space trade-offs for 

various operations. Some implementations are designed to improve the efficiency of very specialized 

operations, such as nearest or union. Implementations described as "general use" typically strive to optimize 

the element_of, add, and delete operation. 

Sets are commonly implemented in the same way as associative arrays, namely, a self-balancing binary 

search tree for sorted sets (which has O(log n) for most operations), or a hash table for unsorted sets (which 

has O(1) average-case, but O(n) worst-case, for most operations). A sorted linear hash table may be used to 

provide deterministically ordered sets. 

Other popular methods include arrays. In particular a subset of the integers 1..n can be implemented 

efficiently as an n-bit bit array, which also support very efficient union and intersection operations. A Bloom 

map implements a set probabilistically, using a very compact representation but risking a small chance of 

false positives on queries. The Boolean set operations can be implemented in terms of more elementary 

operations (pop, clear, and add), but specialized algorithms may yield lower asymptotic time bounds. If sets 

are implemented as sorted lists, for example, the naive algorithm for union(S,T) will take code proportional 

to the length m of S times the length n of T; whereas a variant of the list merging algorithm will do the job in 

time proportional to m+n. Moreover, there are specialized set data structures (such as the union-find data 

structure) that are optimized for one or more of these operations, at the expense of others. 

6.5 Counting Binary Trees 

Definition: A binary tree has a special vertex called its root. From this vertex at the top, the rest of the tree is 

drawn downward. Each vertex may have a left child and/or a right child. 

Example. The number of binary trees with 1, 2, 3 vertices is: 

Example. The number of binary trees with 4 vertices is: 

Conjecture: The number of binary trees on n vertices is . 

Proof: Every binary tree either: 

! Has no vertices (x0) –or– 
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! Breaks down as one root vertex (x) 

along with two binary trees beneath (B(x)2). 

Therefore, the generating function for binary trees satisfies B(x) = 1 + xB(x)2. We conclude bn = 1 

n+1#2n n $ . 

Another way: Find a recurrence for bn. Note: 

b4 = b0b3 + b1b2 + b2b1 + b3b0. 

In general, bn =%n−1 i=0 bibn−1−i . 

Therefore, B(x) equals 1 + & n"1 '&n−1 i=0 bibn−1−I ( xn = 1 + x & n"1 '&n−1 i=0 

bibn−1−I ( xn−1 = 1+x & k"0 '&k i=0 bibk−I ( xk = 1+x '& k"0 bkxk ('& k"0 bkxk ( = 1+xB(x)2. 

 

6.6 The Graph Abstract Data Type. 

A graph is an abstract data type that is meant to implement the graph and hypergraph concepts from 

mathematics.A graph data structure consists of a finite (and possibly mutable) set of ordered pairs, called 

edges or arcs, of certain entities called nodes or vertices. As in mathematics, an edge (x,y) is said to point or 

go from x to y. The nodes may be part of the graph structure, or may be external entities represented by 

integer indices or references. A graph data structure may also associate to each edge some edge value, such 

as a symbolic label or a numeric attribute (cost, capacity, length, etc.). 

Algorithms 

Graph algorithms are a significant field of interest within computer science. Typical higher-level operations 

associated with graphs are: finding a path between two nodes, like depth-first search and breadth-first search 

and finding the shortest path from one node to another, like Dijkstra's algorithm. A solution to finding the 

shortest path from each node to every other node also exists in the form of the Floyd–Warshall algorithm.A 

directed graph can be seen as a flow network, where each edge has a capacity and each edge receives a flow. 

The Ford–Fulkerson algorithm is used to find out the maximum flow from a source to a sink in a graph 

Operations 

The basic operations provided by a graph data structure G usually include: 

 adjacent(G, x, y): tests whether there is an edge from node x to node y. 

 neighbors(G, x): lists all nodes y such that there is an edge from x to y. 

 add(G, x, y): adds to G the edge from x to y, if it is not there. 
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 delete(G, x, y): removes the edge from x to y, if it is there. 

 get_node_value(G, x): returns the value associated with the node x. 

 set_node_value(G, x, a): sets the value associated with the node x to a. 

Structures that associate values to the edges usually also provide: 

 get_edge_value(G, x, y): returns the value associated to the edge (x,y). 

 set_edge_value(G, x, y, v): sets the value associated to the edge (x,y) to v. 
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UNIT - 7 

PRIORITY QUEUES 

7.1 Single- and Double-Ended Priority Queues 

7.2 Leftist Trees 

7.3 Binomial Heaps 

7.4 Fibonacci Heaps 

7.5 Pairing Heaps. 
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UNIT - 7 

PRIORITY QUEUES 

7.1 Single- and Double-Ended Priority Queues 

Priority Queue: 

Need for priority queue: 

 In a multi user environment, the operating system scheduler must decide which of several processes 

to run only for a fixed period for time. 

 For that we can use the algorithm of QUEUE, where Jobs are initially placed at the end of the queue. 

 The scheduler will repeatedly take the first job on the queue, run it until either it finishes or its time 

limit is up, and placing it at the and of the queue if it doesn‘t finish. 

 This strategy is generally not approximate, because very short jobs will soon to take a long time 

because of the wait involved to run. 

 Generally, it is important that short jobs finish as fast as possible, so these jobs should have 

precedence over jobs that have already been running. 

 Further more, some jobs that are not short are still very important and should also have precedence. 

 This particular application seems to require a special kind of queue, known as aPRIORITY QUEUE. 

Priority Queue: 

It is a collection of ordered elements that provides fast access to the minimum or maximum element. 

Basic Operations performed by priority queue are: 

1. Insert operation 

2. Deletemin operation 

 Insert operation is the equivalent of queue‘s Enqueue operation. 

 Deletemin operation is the priority queue equivalent of the queue‘s Dequeue operation. 

 

 

7.2 Leftist Trees 

A (single-ended) priority queue is a data type supporting the following operations on an ordered set of 

values: 
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1) find the maximum value (FindMax); 

2) delete the maximum value (DeleteMax); 

3) add a new value x (Insert(x)). 

Obviously, the priority queue can be redefined by substituting operations 1) and 2) with FindMin and 

DeleteMin, respectively. Several structures, some implicitly stored in an array and some using more complex 

data structures, have been presented for implementing this data type, including max heaps (or min-heaps) 

Conceptually, a max-heap is a binary tree having the following properties: 

a) heap-shape: all leaves lie on at most two adjacent levels, and the leaves on the last level occupy the 

leftmost positions; all other levels are complete. 

b) max-ordering: the value stored at a node is greater than or equal to the values stored at its children. A 

max-heap of size n can be constructed in linear time and can be stored in an n-element array; hence it is 

referred to as an implicit data structure [g]. 

When a max-heap implements a priority queue, FindMax can be performed in constant time, while both 

DeleteMax and Insert(x) have logarithmic time. We shall consider a more powerful data type, the 

doubleended priority queue, which allows both FindMin and FindMax, as well as DeleteMin, DeleteMax, 

and Insert(x) operations. An important application of this data type is in external quicksort . 

A traditional heap does not allow efficient implementation of all the above operations; for example, 

FindMin requires linear (instead of constant) time in a max-heap. One approach to overcoming this intrinsic 

limitation of heaps, is to place a max-heap ―back-to-back‖ with a min-heap Definition 

A double-ended priority queue (DEPQ) is a collection of zero or more elements. Each element has a 

priority or value. The operations performed on a double-ended priority queue are: 

1. isEmpty() ... return true iff the DEPQ is empty 

2. size() ... return the number of elements in the DEPQ 

3. getMin() ... return element with minimum priority 

4. getMax() ... return element with maximum priority 

5. put(x) ... insert the element x into the DEPQ 

6. removeMin() ... remove an element with minimum priority and return this element 

7. removeMax() ... remove an element with maximum priority and return this element 

7.3 Binomial Heaps 
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Binomial heap is a heap similar to a binary heap but also supports quickly merging two heaps. This is 

achieved by using a special tree structure. It is important as an implementation of the mergeable heap 

abstract data type (also called meldable heap), which is a priority queue supporting merge operation. A 

binomial heap is implemented as a collection of binomial trees (compare with a binary heap, which has a 

shape of a single binary tree). A binomial tree is defined recursively: 

 A binomial tree of order 0 is a single node 

 A binomial tree of order k has a root node whose children are roots of binomial trees of orders k−1, 

k−2, ..., 2, 1, 0 (in this order). 

 

Binomial trees of order 0 to 3: Each tree has a root node with subtrees of all lower ordered binomial trees, 

which have been highlighted. For example, the order 3 binomial tree is connected to an order 2, 1, and 

0(highlighted as blue, green and red respectively) binomial tree. 

A binomial tree of order k has 2k nodes, height k. 

Because of its unique structure, a binomial tree of order k can be constructed from two trees of order 

k−1trivially by attaching one of them as the leftmost child of root of the other one. This feature is central to 

the merge operation of a binomial heap, which is its major advantage over other conventional heaps 

Structure of a binomial heap 

A binomial heap is implemented as a set of binomial trees that satisfy the binomial heap properties: 

Each binomial tree in a heap obeys the minimum-heap property: the key of a node is greater than or equal to 

the key of its parent.  

There can only be either one or zero binomial trees for each order, including zero order. 

The first property ensures that the root of each binomial tree contains the smallest key in the tree, which 

applies to the entire heap. 

The second property implies that a binomial heap with n nodes consists of at most log n + 1 binomial trees. 

In fact, the number and orders of these trees are uniquely determined by the number of nodes n: each 
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binomial tree corresponds to one digit in the binary representation of number n. For example number 13 is 

1101 in binary, , and thus a binomial heap with 13 nodes will consist of three binomial trees of orders 3, 2, 

and 0 (see figure below). 

 

 

7.4 Fibonacci Heaps 

A Fibonacci heap is a heap data structure consisting of a collection of trees. It has a better amortized 

running time than a binomial heap. Fibonacci heaps were developed by Michael L. Fredman and Robert E. 

Tarjan in 1984 and first published in a scientific journal in 1987. The name of Fibonacci heap comes from 

Fibonacci numbers which are used in the running time analysis. 

Find-minimum is O(1) amortized time.Operations insert, decrease key, and merge (union) work in constant 

amortized time. Operations delete and delete minimum work in O(log n) amortized time. This means that 

starting from an empty data structure, any sequence of a operations from the first group and b operations 

from the second group would take O(a + b log n) time. In a binomial heap such a sequence of operations 

would take O((a + b)log (n)) time. A Fibonacci heap is thus better than a binomial heap when b is 

asymptotically smaller than a. 

Using Fibonacci heaps for priority queues improves the asymptotic running time of important algorithms, 

such as Dijkstra's algorithm for computing the shortest path between two nodes in a graph. 

Structure 

 

Fibonacci heap is a collection of trees satisfying the minimum-heap property, that is, the key of a child is 

always greater than or equal to the key of the parent. This implies that the minimum key is always at the root 
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of one of the trees. Compared with binomial heaps, the structure of a Fibonacci heap is more flexible. The 

trees do not have a prescribed shape and in the extreme case the heap can have every element in a separate 

tree. This flexibility allows some operations to be executed in a "lazy" manner, postponing the work for later 

operations. For example merging heaps is done simply by concatenating the two lists of trees, and operation 

decrease key sometimes cuts a node from its parent and forms a new tree. However at some point some order 

needs to be introduced to the heap to achieve the desired running time. 

In particular, degrees of nodes (here degree means the number of children) are kept quite low: every node 

has degree at most O(log n) and the size of a subtree rooted in a node of degree k is at least Fk + 2, where Fk 

is the kth Fibonacci number. This is achieved by the rule that we can cut at most one child of each nonroot 

node. When a second child is cut, the node itself needs to be cut from its parent and becomes the root.  As a 

result of a relaxed structure, some operations can take a long time while others are done very quickly. In the 

amortized running time analysis we pretend that very fast operations take a little bit longer than they actually 

do. This additional time is then later subtracted from the actual running time of slow operations. The amount 

of time saved for later use is measured at any given moment by a potential function. The potential of a 

Fibonacci heap is given by 

Potential = t + 2m where t is the number of trees in the Fibonacci heap, and m is the number of marked 

nodes. A node is marked if at least one of its children was cut since this node was made a child of another 

node (all roots are unmarked). 

Thus, the root of each tree in a heap has one unit of time stored. This unit of time can be used later to link 

this tree with another tree at amortized time 0. Also, each marked node has two units of time stored. One can 

be used to cut the node from its parent. If this happens, the node becomes a root and the second unit of time 

will remain stored in it as in any other root. 

Implementation of operations 

To allow fast deletion and concatenation, the roots of all trees are linked using a circular, doubly linked list. 

The children of each node are also linked using such a list. For each node, we maintain its number of 

children and whether the node is marked. Moreover we maintain a pointer to the root containing the 

minimum key. 

Operation find minimum is now trivial because we keep the pointer to the node containing it. It does not 

change the potential of the heap, therefore both actual and amortized cost is constant. As mentioned above, 
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merge is implemented simply by concatenating the lists of tree roots of the two heaps. This can be done in 

constant time and the potential does not change, leading again to constant amortized time. Operation  insert 

works by creating a new heap with one element and doing merge. This takes constant time, and the potential 

increases by one, because the number of trees increases. The amortized cost is thus still constant. 

7.5 Pairing Heaps. 

Pairing heaps are a type of heap data structure with relatively simple implementation and excellent practical 

amortized performance. However, it has proven very difficult to determine the preciseasymptotic running 

time of pairing heaps. 

Pairing heaps are heap ordered multiway trees. Describing the various heap operations is relatively simple 

(in the following we assume a min-heap): 

 find-min: simply return the top element of the heap. 

 merge: compare the two root elements, the smaller remains the root of the result, the larger element 

and its subtree is appended as a child of this root. 

 insert: create a new heap for the inserted element and merge into the original heap. 

 decrease-key (optional): remove the subtree rooted at the key to be decreased then merge it with the 

heap. delete-min: remove the root and merge its subtrees. Various strategies are employed. 

The amortized time per delete-min is O(logn).The operations find-min, merge, and insert take O(1) amortized 

time and decrease-key takes amortized time. Fredman proved that the amortized time per decrease-key is at 

least Ω(loglogn). That is, they are less efficient than Fibonacci heaps, which perform decrease-key in O(1) 

amortized time. 

Implementation 

A pairing heap is either an empty heap, or a pair consisting of a root element and a possibly empty list of 

pairing heaps. The heap ordering property requires that all the root elements of the subheaps in the list are 

not smaller that then root element of the heap. The following description assumes a purely functional heap 

that does not support the decrease-key operation. 

type PairingHeap[Elem] = Empty | Heap(elem: Elem, subheaps: List[PairingHeap[Elem]]) 

Operations 

find-min 

The function find-min simply returns the root element of the heap: 
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function find-min(heap) 

if heap == Empty 

error 

else 

return heap.elem 

merge: 

Merging with an empty heap returns the other heap, otherwise a new heap is returned that has the minimum 

of the two root elements as its root element and just adds the heap with the larger root to the list of subheaps: 

function merge(heap1, heap2) 

if heap1 == Empty 

return heap2 

elsif heap2 == Empty 

return heap1 

elseif heap1.elem < heap2.elem 

return Heap(heap1.elem, heap2 :: heap1.subheaps) 

else 

return Heap(heap2.elem, heap1 :: heap2.subheaps) 

Insert: 

The easiest way to insert an element into a heap is to merge the heap with a new heap containing just this 

element and an empty list of subheaps: 

function insert(elem, heap) 

return merge(Heap(elem, []), heap) 
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delete-min: 

The only non-trivial fundamental operation is the deletion of the minimum element from the heap. The 

standard strategy first merges the subheaps in pairs (this is the step that gave this datastructure its name) 

from left to right and then merges the resulting list of heaps from right to left: 

fuction delete-min(heap) 

if heap == Empty 

error 

elsif length(heap.subheaps) == 0 

return Empty 

elsif length(heap.subheaps) == 1 

return heap.subheaps[0] 

else 

return merge-pairs(heap.subheaps) 

This uses the auxiliary function merge-pairs: 

function merge-pairs(l) 

if length(l) == 0 

return Empty 

elsif length(l) == 1 

return l[0] 

else 

return merge(merge(l[0], l[1]), merge-pairs(l[2.. ])) 
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UNIT - 8 

EFFICIENT BINARY SEARCH TREES 

8.1 Optimal Binary Search Trees 

8.2 AVL Trees 

8.3 Red-Black Trees 

8.4 Splay Trees 
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UNIT - 8 

EFFICIENT BINARY SEARCH TREES 

8.1 Optimal Binary Search Trees 

An optimal binary search tree is a binary search tree for which the nodes are arranged on levels such that the 

tree cost is minimum. For the purpose of a better presentation of optimal binary search trees, we will 

consider ―extended binary search trees‖, which have the keys stored at their internal nodes. Suppose ―n‖ keys 

k1, k2, … , k n are stored at the internal nodes of a binary search tree. It is assumed that the keys are given in 

sorted order, so that k1< k2 < … < kn. An extended binary search tree is obtained from the binary search tree 

by adding successor nodes to each of its terminal nodes as indicated in the following figure by squares: 

 

 

 

In the extended tree: the squares represent terminal nodes. These terminal nodes represent unsuccessful 

searches of the tree for key values. The searches did not end successfully, that is, because they represent key 

values that are not actually stored in the tree; the round nodes represent internal nodes; these are the actual 

keys stored in the tree; assuming that the relative frequency with which each key value is accessed is known, 

weights can be assigned to each node of the extended tree (p1 … p6). They represent the relative frequencies 

of searches terminating at each node, that is, they mark the successful searches. 

If the user searches a particular key in the tree, 2 cases can occur: 

1 – The key is found, so the corresponding weight ‗p‘ is incremented; 

2 – The key is not found, so the corresponding ‗q‘ value is incremented. 

GENERALIZATION: the terminal node in the extended tree that is the left successor of k1 can be 

interpreted as representing all key values that are not stored and are less than k1. Similarly, the terminal 

node in the extended tree that is the right successor of kn, represents all key values not stored in the tree that 

are greater than kn. The terminal node that is successed between ki and ki-1 in an inorder traversal represents 

all key values not stored that lie between ki and ki - 1. 
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An obvious way to find an optimal binary search tree is to generate each possible binary search tree for the 

keys, calculate the weighted path length, and keep that tree with the smallest weighted path length. 

This search through all possible solutions is not feasible, since the number of such trees grows exponentially 

with ―n‖. 

An alternative would be a recursive algorithm. Consider the characteristics of any optimal tree. Of course it 

has a root and two subtrees. Both subtrees must themselves be optimal binary search trees with respect to 

their keys and weights. First, any subtree of any binary search tree must be a binary search tree. 

Second, the subtrees must also be optimal. Since there are ―n‖ possible keys as candidates for the root of the 

optimal tree, the recursive solution must try them all. For each candidate key as root, all keys less than 

8.2 AVL Trees 

 

8.3 Red-Black Trees 

Properties 

A binary search tree in which 

 The root is colored black 

 All the paths from the root to the leaves agree on the number of black nodes 

 No path from the root to a leaf may contain two consecutive nodes colored red 

Empty subtrees of a node are treated as subtrees with roots of black color. 

The relation n > 2h/2 - 1 implies the bound h < 2 log 2(n + 1). 

Insertions 

 Insert the new node the way it is done in binary search trees 

 Color the node red 

 If a discrepancy arises for the red-black tree, fix the tree according to the type of discrepancy. 

A discrepancy can result from a parent and a child both having a red color. The type of discrepancy is 

determined by the location of the node with respect to its grand parent, and the color of the sibling of the 

parent. 

Discrepancies in which the sibling is red, are fixed by changes in color. Discrepancies in which the siblings 

are black, are fixed through AVL-like rotations. 
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Changes in color may propagate the problem up toward the root. On the other hand, at most one rotation is 

sufficient for fixing a discrepancy. 

 

 

 

Deletions 

 Delete a key, and a node, the way it is done in binary search trees. 
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 A node to be deleted will have at most one child. If the deleted node is red, the tree is still a redblack 

 tree. If the deleted node has a red child, repaint the child to black. 

 If a discrepancy arises for the red-black tree, fix the tree according to the type of discrepancy.  

 A discrepancy can result only from a loss of a black node. 

Let A denote the lowest node with unbalanced subtrees. The type of discrepancy is determined by the 

location of the deleted node (Right or Left), the color of the sibling (black or red), the number of red 

children in the case of the black siblings, and and the number of grand-children in the case of red siblings. 

In the case of discrepancies which result from the addition of nodes, the correction mechanism may 

propagate the color problem (i.e., parent and child painted red) up toward the root, and stopped on the way 

by a single rotation. Here, in the case of discrepancies which result from the deletion of nodes, the 

discrepancy of a missing black node may propagate toward the root, and stopped on the way by an 

application of an appropriate rotation. 

 

 

 



DATASTRUCTURES WITH C                                                                                                        10CS35 

 

Dept. of CSE, SJBIT Page 83 

  

 

 

 

 

 

8.4 Splay Trees 

A splay tree is a self-adjusting binary search tree with the additional property that recently accessed 

elements are quick to access again. It performs basic operations such as insertion, look-up and removal 

in O(log n) amortized time. For many sequences of non-random operations, splay trees perform better than 

http://en.wikipedia.org/wiki/Binary_search_tree
http://en.wikipedia.org/wiki/Big_O_notation
http://en.wikipedia.org/wiki/Amortized_analysis
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other search trees, even when the specific pattern of the sequence is unknown. The splay tree was invented 

by Daniel Dominic Sleator and Robert Endre Tarjan in 1985.  

All normal operations on a binary search tree are combined with one basic operation, called splaying. 

Splaying the tree for a certain element rearranges the tree so that the element is placed at the root of the tree. 

One way to do this is to first perform a standard binary tree search for the element in question, and then 

use tree rotations in a specific fashion to bring the element to the top. Alternatively, a top-down algorithm 

can combine the search and the tree reorganization into a single phase. 

Splaying 

When a node x is accessed, a splay operation is performed on x to move it to the root. To perform a splay 

operation we carry out a sequence of splay steps, each of which moves x closer to the root. By performing a 

splay operation on the node of interest after every access, the recently-accessed nodes are kept near the root 

and the tree remains roughly balanced, so that we achieve the desired amortized time bounds. 

Each particular step depends on three factors: 

 Whether x is the left or right child of its parent node, p, 

 whether p is the root or not, and if not 

 whether p is the left or right child of its parent, g (the grandparent of x). 

It is important to remember to set gg (the great-grandparent of x) to now point to x after any splay operation. 

If gg is null, then x obviously is now the root and must be updated as such. 

There are three types of splay steps, each of which has a left- and right-handed case. For the sake of brevity, 

only one of these two is shown for each type. These three types are: 

Zig Step: This step is done when p is the root. The tree is rotated on the edge between x and p. Zig steps 

exist to deal with the parity issue and will be done only as the last step in a splay operation and only 

when x has odd depth at the beginning of the operation. 

http://en.wikipedia.org/wiki/Daniel_Dominic_Sleator
http://en.wikipedia.org/wiki/Robert_Endre_Tarjan
http://en.wikipedia.org/wiki/Tree_rotation
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Zig-zig Step: This step is done when p is not the root and x and p are either both right children or are both 

left children. The picture below shows the case where x andp are both left children. The tree is rotated on the 

edge joining p with its parent g, then rotated on the edge joining x with p. Note that zig-zig steps are the only 

thing that differentiate splay trees from the rotate to root method introduced by Allen and Munro
[3]

 prior to 

the introduction of splay trees. 

 

Zig-zag Step: This step is done when p is not the root and x is a right child and p is a left child or vice versa. 

The tree is rotated on the edge between p and x, and then rotated on the resulting edge between x and g. 

 

 

http://en.wikipedia.org/wiki/Splay_tree#cite_note-AllenMunro-3
http://en.wikipedia.org/wiki/File:Splay_tree_zig.svg
http://en.wikipedia.org/wiki/File:Zigzig.gif
http://en.wikipedia.org/wiki/File:Zigzag.gif

