17315

13141

3 Hours / 100 Marks

 Seat No. \squareInstructions - (1) All Questions are Compulsory.
(2) Answer each next main Question on a new page.
(3) Illustrate your answers with neat sketches wherever necessary.
(4) Figures to the right indicate full marks.
(5) Assume suitable data, if necessary.
(6) Use of Non-programmable Electronic Pocket Calculator is permissible.
(7) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

1. a) Attempt any FOUR of the following: 08
i) State the Vander Waal's equation used for real gases.
ii) Define yield and conversion.
iii) Define average molecular weight of a gas mixture and give an expression for its determination.
iv) State Henry's law for gas-Liquid system.
v) Define standard heat of formation.
vi) What do you mean by percent excess?
b) Attempt any TWO of the following:
i) A gas mixture has the following composition by volume. Ethylene $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right) 30.6 \%$, Benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right) 24.5 \%$, Oxygen $\left(\mathrm{O}_{2}\right) 1.3 \%$, Methane $\left(\mathrm{CH}_{4}\right) 15.5 \%$, Ethane $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right) 25.0 \%$, Nitrogen $\left(\mathrm{N}_{2}\right) 3.1 \%$ Find :
1) The average molecular weight of the gas mixture.
2) The density of the mixture in $\mathrm{Kg} / \mathrm{m}^{3}$ at 273.15 K and 101.325 KPa .
ii) Calculate the vapour pressure of pure butane at $20^{\circ} \mathrm{C}$ if its partial pressure is 698 mm Hg in a butane-acetone mixture. The mole fraction of acetone in the mixture is 0.577 .
iii) A sample of gas having volume of $1 \mathrm{~m}^{3}$ is compressed to half of its original volume. The operation is carried for a fixed mass of gas at constant temperature.
Calculate the percent increase in pressure.
2. Attempt any FOUR of the following:
a) Explain the steps for solving material balance problems without chemical reaction.
b) A sample of coal is found to contain 63% carbon and 24% ash on a weight basis. The analysis of refuse after combustion shows 7% carbon and rest ash. Calculate the percentage of the original carbon unburnt in the refuse.
c) Formaldehyde is produced from methanol in a catalytic reactor. The production rate of formaldehyde is $1000 \mathrm{Kg} / \mathrm{hr}$. If the conversion of methanol is 65%. Calculate the required feed rate of methanol.
d) Gaseous benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ reacts with hydrogen in the presence of Ni catalyst as per the reaction
$\mathrm{C}_{6} \mathrm{H}_{6(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightarrow \mathrm{C}_{6} \mathrm{H}_{12(\mathrm{~g})}$
30% excess hydrogen is used above that required by the above reaction. Conversion is 50% and yield is 90%.
Calculate the requirement of benzene and hydrogen gas for 100 moles of cyclohexane.
e) In production of sulphur trioxide 100 kmol of SO_{2} and $200 \mathrm{kmol}_{2}$ are fed to a reactor. The product stream is found to contain $80{\mathrm{kmol} \mathrm{SO}_{3} \text {. Find the percent conversion }}_{\text {. }}$ of SO_{2}.
f) Calculate the heat of reaction at $298.15 \mathrm{k}\left(25^{\circ} \mathrm{C}\right)$ of the following reaction.

$$
\mathrm{C}_{2} \mathrm{H}_{6(\mathrm{~g})} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4(\mathrm{~g})}+\mathrm{H}_{2(\mathrm{~g})}
$$

Component	$\Delta \mathrm{Hc}(\mathrm{KJ} / \mathrm{mol})$
$\mathrm{C}_{2} \mathrm{H}_{6(\mathrm{~g})}$	-1560.69
$\mathrm{C}_{2} \mathrm{H}_{4(\mathrm{~g})}$	-1411.2
$\mathrm{H}_{2(\mathrm{~g})}$	-285.83

3. Attempt any TWO of the following:

a) Ethylene oxide is prepared by oxidation of ethylene. 100 kmol of ethylene and 100 kmol of O_{2} are charged to a reactor. The percent conversion of ethylene is 85% and percent yield of $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$ is 94.12%. Calculate the composition of product stream leaving the reactor. The reactions taking place are

$$
\begin{aligned}
& \mathrm{C}_{2} \mathrm{H}_{4}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O} \\
& \mathrm{C}_{2} \mathrm{H}_{4}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

b) The waste acid from a nitrating process containing $20 \% \mathrm{HNO}_{3}$, $55 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ and $25 \% \quad \mathrm{H}_{2} \mathrm{O}$ by weight, is to be concentrated by addition of concentrated sulphuric acid containing 95% $\mathrm{H}_{2} \mathrm{SO}_{4}$ and concentrated nitric acid containing $90 \% \mathrm{HNO}_{3}$ to get desired mixed acid containing $26 \% \mathrm{HNO}_{3}$ and $60 \% \mathrm{H}_{2} \mathrm{SO}_{4}$. Calculate the quantities of waste acid and concentrated acids required for 1000 kg of desired mixed acid.
c) $10,000 \mathrm{~kg} / \mathrm{hr}$ of solution containing 20% methanol is continuously fed to a distillation column. Distillate (Product) is found to contain 98% methanol and waste solution from the column carries 1% methanol. All percentages are by weight. Calculate :
i) The mass flow rates of distillate and bottom product.
ii) The percent loss of methanol.

4. Attempt any TWO of the following:

a) Calculate the standard heat of formation of napthalene $\left(\mathrm{C}_{10} \mathrm{H}_{8}\right)$ crystals from its elements at 298.15 k using the following data.

Data : Standard heat of formation of $\mathrm{CO}_{2(\mathrm{~g})}=-393.51 \mathrm{KJ} / \mathrm{mol}$ Standard heat of formation of $\mathrm{H}_{2} \mathrm{O}(l)=-285.83 \mathrm{KJ} / \mathrm{mol}$ Heat of combustion of naphthalene $\left(\mathrm{C}_{10} \mathrm{H}_{8}\right)$ at $298.15 \mathrm{k}=5156.95 \mathrm{KJ} / \mathrm{mol}$
b) Single effect evaporator concentrating a weak liquor containing 4% solids to 55% solids (by weight) is fed with $5000 \mathrm{~kg} / \mathrm{hr}$ of weak liquor. Calculate :
i) Water evaporated per hour
ii) Flow rate of thick liquor
c) A feed containing A, B an inerts enters a reactor.

The reaction taking place is
$2 \mathrm{~A}+\mathrm{B} \rightarrow \mathrm{C}$
The product stream leaving the reactor is having following composition by mole. inerts $=19.23 \%, \mathrm{~A}=23.08 \%$,
$B=11.54 \%, C=46.15 \%$
Find the analysis of feed on mole basis.
5. Attempt any TWO of the following:
a) Calculate the composition of gases obtained by burning pure FeS_{2} with 60% excess air. Assume that reaction proceeds in the following manner and goes to completion.
$4 \mathrm{FeS}_{2_{(\mathrm{s})}}+11 \mathrm{O}_{2_{(\mathrm{g})}} \rightarrow 2 \mathrm{FeO}_{3_{(\mathrm{s})}}+8 \mathrm{SO}_{2_{(\mathrm{g})}}$
b) Dryer system handles $1000 \mathrm{~kg} /$ day of wet solids. Wet solids containing 50% solids and 50% water are fed to the first dryer. From the first dryer the product that comes out has 20% moisture. This is admitted to the second dryer, from which the product coming out has 2% moisture. Calculate the $\%$ of original water that is removed in each dryer and final weight of the product.
c) Methane gas is heated from 303 k to 523 k at atmospheric pressure. Calculate the heat added per kmol methane using Cp° data given below
Data: $\mathrm{Cp}^{\circ}=\mathrm{a}+\mathrm{bT}+\mathrm{cT}^{2}+\mathrm{dT}^{3},(\mathrm{~kJ} / \mathrm{kmol} . \mathrm{k})$

Gas	a	$\mathrm{b} \times 10^{3}$	$\mathrm{c} \times 10^{6}$	$\mathrm{~d} \times 10^{9}$
Methane	19.2494	52.1135	11.973	-11.3173

6. Attempt any FOUR of the following: 16
a) Methane oxidation reactions are :
$\mathrm{CH}_{4}+\mathrm{O}_{2} \rightarrow \mathrm{HCHO}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
100 kmol of methane are charged, if the product stream is found to contain $10 \mathrm{kmol} \mathrm{CO}_{2}$ and 40 kmol formaldehyde. Calculate.
i) The percent conversion of methane and
ii) The yield of formaldehyde
b) The ground nuts seeds containing 45% oil and 45% solids are fed to expeller, the cake coming out of expeller is found to contain 80% solid and 5% oil. Find the percentage recovery of oil.
c) Define recycling and state any four reasons for performing recycling operation in industry.
d) A coke is known to contain 90% carbon and 10% ash by weight. Air is used 20% excess for combustion (on mole basis). Calculate the moles of air supplied per 100 kg of coke burned.
e) 100 kmol of ethanol are charged to a dehydrogenation reactor to produce acetaldehyde $\left(\mathrm{CH}_{3} \mathrm{CHO}\right)$. The product stream is found to contain 45 kmol acetaldehyde. Find the percent conversion of ethanol.
f) Explain Hess's law of constant heat summation with example.

17315

13141
3 Hours / 100 Marks

