13141

3 Hours / 100 Marks
Seat No. \square
Instructions - (1) All Questions are Compulsory.
(2) Answer each next main Question on a new page.
(3) Illustrate your answers with neat sketches wherever necessary.
(4) Figures to the right indicate full marks.
(5) Assume suitable data, if necessary.
(6) Use of Non-programmable Electronic Pocket Calculator is permissible.
(7) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

Marks

1. a) Attempt any SIX of the following:
i) Define with respect to digital ICS.
1) Propagation delay time
2) Fan - Out
ii) State two advantages and disadvantages of digital system.
iii) State any four Boolean laws.
iv) State De-Morgan's first and second theorem.
v) Convert the following:
3) $(786)_{10}=(?)_{2}$
4) $(624)_{8}=(?)_{2}$
vi) Draw logical symbol, truth table and logical expression of EX-OR gate.
vii) Define priority encoders and name the following ICS.
5) IC 74147
6) IC 74148
viii) Define following with respect to DAC.
7) Resolution
8) Settling time
b) Attempt any TWO of the following:
i) Convert the following:
9) $(\mathrm{AD} 5)_{\mathrm{H}}=(?)_{10}$
10) $(10110)_{2}=(?)_{10}$
11) $(625)_{10}=(?)_{2}$
12) $(174)_{10}=(?)_{\mathrm{BCD}}$
ii) Implement OR and AND gates by using NAND gates only.
iii) Perform following operation by using 2's complement method.
13) $(83)_{10}-(67)_{10}$
14) $(53)_{10}-(97)_{10}$
2. Attempt any FOUR of the following:
a) Draw logical symbol, truth table and logical expression for NAND and NOR gate.
b) Simplify the following Boolean expressions using Boolean laws.
i) $\quad \mathrm{Y}=\mathrm{A}(\overline{\mathrm{A}}+\mathrm{C})(\overline{\mathrm{A}} \mathrm{B}+\overline{\mathrm{C}})$
ii) $\quad \mathrm{Y}=\mathrm{B} \overline{\mathrm{C}} \overline{\mathrm{D}}+\overline{\mathrm{A}} \mathrm{BD}+\mathrm{ABD}+\mathrm{BC} \overline{\mathrm{D}}+\overline{\mathrm{B}} \mathrm{CD}+\overline{\mathrm{A}} \overline{\mathrm{B}} \overline{\mathrm{C}} \mathrm{D}+\mathrm{A} \overline{\mathrm{B}} \overline{\mathrm{C}} \mathrm{D}$
c) Differentiate between TTL, CMOS and ECL logic family w.r.t.
i) Propagation delay
ii) Noise margin
iii) Fan out
iv) Figure of merit.
d) Minimize the following Boolean expression using K-map.
$\mathrm{Y}=\Sigma \mathrm{m}(0,1,3,4,5,6,7,13,15)$
Draw the logical ckts diagram of minimized expression using basic gates.
e) Design full-adder using K-map, universal gates.
f) Draw the block diagram of BCD to 7 - segment decoder / driver and draw its truth table.
3. Attempt any FOUR of the following:
a) Reduce the following expression and implement it using logic gates.
$Y=(\overline{\mathrm{AB}}+\overline{\mathrm{A}+\mathrm{B}}) \mathrm{A} \cdot \overline{\mathrm{B}}$
b) Draw the logical diagram of $1: 4$ demultiplexer and describe its working. Write the expression for the output and draw the circuit diagram using logic gates.
c) Convert the expression $\mathrm{Y}=\mathrm{AB}+\mathrm{A} \overline{\mathrm{C}}+\mathrm{BC}$ into the standard SOP form.
d) For the given equation $\mathrm{F}=\mathrm{BC}+\overline{\mathrm{A}} \overline{\mathrm{B}} \overline{\mathrm{C}}+\mathrm{AB} \overline{\mathrm{C}}$
i) Simplify using K-map.
ii) Construct the simplified expression by using NAND gates only.
e) Draw a schematic diagram of MS-JK flip flop. Explain its working with a truth table.
f) Draw the logical circuit diagaram of 3-bit synchronous counter. Describe its working with timing diagram.

4. Attempt any FOUR of the following:

a) Draw the logical circuit of 4-bit serial - in serial - out shift register. Explain with truth table.
b) Differentiate between combinational and sequential circuit (any four points).
c) State the advantages and disadvantages successive approximation ADC.
d) Draw a clock signal and explain positive edge triggering and negative edge triggering.
e) Classify the memories and explain ROM.
f) Draw the block diagram of dual slope A-D converters and describes its working.
5. Attempt any FOUR of the following:
a) Perform the following BCD arithmetic operation:
i) $\quad(637)_{10}+(463)_{10}$
ii) $\quad(63)_{10}+(19)_{10}$
b) Describe the significance of preset and clear terminals in J-K flip-flop.
c) Reduce the following expression and implement logic gates.
$\mathrm{Y}=\mathrm{AB}+\mathrm{ABC}+\mathrm{AB}(\mathrm{E}+\mathrm{F})$
d) Draw circuit diagram of 4-bit asynchronous counter and describe with timing diagram.
e) Draw the block diagram of comparator IC 7485 and write the truth table.
f) Draw mod-11 asynchronous counter using T - flip-flop.

6. Attempt any TWO of the following:

a) i) State the application of multiplexes. 2
ii) Design 1: 16 DMUX using 1:4 DMUX 6
b) i) Convert S-R FF into D-FF and explain. 2
ii) Draw pin diagram of universal shift register IC 7495 and label it.
iii) State the applications of shift register. 4
c) i) Draw circuit diagram of weighted register method of D-A converter and explain in brief.
ii) Define the following specifications of A-D converter: 4

1) Convertion time
2) Resolution.

17333

13141

3 Hours / 100 Marks

