15116

3 Hours / 100 Marks Seat No.

- **Instructions**: (1) All Questions are *compulsory*.
 - (2) Answer each next main Question on a new page.
 - (3) Illustrate your answers with neat sketches wherever necessary.
 - (4) Figures to the right indicate full marks.
 - (5) Assume suitable data, if necessary.

Marks

1. Attempt any TEN of the following:

20

- Define RMS value and average value related to sinusoidal AC waveform.
- (b) Define impedance and reactance related to single phase AC series circuit. Give the units of both.
- (c) Define quality factor of parallel AC circuit and give its formula.
- What do you mean by balanced load and balanced supply in relation with (d) polyphase AC circuits?
- (e) Give four steps to solve nodal analysis.
- (f) Give statement of superposition theorem.
- Draw a waveform and phasor diagram for purely capacitive load. (g)
- Draw voltage triangles for R-L and R-C single phase AC series circuits. (h)
- (i) Define admittance and conductance in relation with parallel circuits. Give formulas for the same.
- Give relation between line voltage and phase voltage in case of 3-Phase star (i) connection and 3-Phase delta connection.
- Give four steps to solve mesh analysis. (k)
- An alternating quantity is given by $i = 14.14 \sin 314t$. Find RMS value and (1) angular frequency of the wave.
- (m) What do you mean by bilateral network and unilateral network?
- Define: (n)
 - Active network (i)
 - Passive network (ii)

17323 [2]

2. Attempt any FOUR of the following:

16

- (a) An alternating current is represented by the equation $i = 100 \sin (100 \pi t)$. How long will it take for the current to attain values of 20 A and 100 A?
- (b) Derive an expression for resonant frequency of a series RLC circuit.
- (c) Give 4 comparison of series and parallel circuits.
- (d) Give four advantages of polyphase circuits over 1-phase circuits.
- (e) Derive the relationship between line voltage and phase voltage in star connected system with suitable phasor diagram.
- (f) How initial and final conditions are used in switching circuits and in electronic circuits?

3. Attempt any FOUR of the following:

16

- (a) Impedances $Z_1 = (10 + j5) \Omega$ and $Z_2 = (8 + j6) \Omega$ are connected in parallel across V = (200 + j0). Using the admittance method, calculate circuit current and the branch currents.
- (b) An inductive coil (10 + j40) Ω impedance is connected in series with a capacitor of 100 μ F across 230 V, 50 Hz, 1-Phase mains find :
 - (1) current through the circuit
 - (2) P.F. of the circuit
 - (3) power dissipated in the circuit
 - (4) Draw phasor diagram
- (c) What are in phase quantities? What is phase sequence?
- (d) What is the importance of initial and final conditions of elements in a network.
- (e) Give statement for:
 - (1) Thevenin's theorem and
 - (2) Norton's Theorem
- (f) Find the value of Z in rectangular form:

$$Z = \frac{(3+j4) \cdot 5 < 30}{(6+j8)}$$

4. Attempt any FOUR of the following:

16

- (a) Draw power triangle. State formulas for active power, reactive power and apparent power.
- (b) Derive the expression for star to delta transformation.

17323 [3]

(c) Find I, I_1 and I_2 of the circuit in fig. (1)

Fig. – 1

(d) Find the current in 6 Ω resistor in the circuit shown in fig. (2) using mesh analysis.

(e) Find the value of variable load resistance R_L , so that maximum power is transferred to R_L shown in fig. (3)

(f) Calculate the current in 1 Ω resistance in the network shown in fig. (4) using Norton's theorem.

17323 [4]

5. **Attempt any FOUR of the following:**

- A = 4 + i7(a) B = 8 + i9C = 5 - j6
 - Find (a) $\frac{A+B}{C}$ (b) $\frac{AB}{C}$
- Find I₁ for the circuit shown in fig. (5) using superposition theorem. (b)

(c) Write and solve the node voltage equation for the circuit shown in fig. (6) using nodal analysis.

- What is the need of polarity marking in polyphase AC circuits? (d)
- (e) Define in relation with AC waveform:
 - Time period (i)
- (ii) Cycle
- (iii) Amplitude
- (iv) Crest factor
- State the value of p.f. during resonance condition. Define p.f. state the (f) importance of p.f.

Attempt any FOUR of the following: 6.

16

16

- Derive an expression for resonant frequency of a series RLC circuit.
- (b) Write the steps for finding the current through an element by Thevenin's theorem.
- Explain with suitable example to convert a practical current source into an (c) equivalent voltage source.
- Write the expression for impedance and power when an AC circuit contains (d) (i) pure R (ii) pure L
- Define: (i) Circuit (ii) Loop (iii) Node (iv) Branch (e)
- State the reasons for using star connection particularly for large capacity (f) alternators?