17323 | | 162
Hours / 100 M | arks | Seat No. | | | | | | | | |---|---|---|--|---|---------------------------|---------|---------|---------|--------|----| | | Instructions : | (2) Answer(3) Illustrat(4) Figures(5) Assume | stions are comp
each next main
te your answer,
to the right in
esuitable data,
Non-programs | n question
s with nea
dicate ful
if necessa | t sketc
I mark
try. | hes w | herev | | ator i | | | 1. | Attempt any ten of the | following: | | | | | | | 1 | 2(| | 1, | a) State the terms instantaneous value and maximum value of an alternating quantity. | | | | | | | | | | | | b) State the average power taken by a pure inductor and a pure capacitor when connected across a.c. supply. | | | | | | | | d | | | c) Define power factor and state its value for pure resistive circuits. | | | | | | | | | | | | | d) Draw impedance tr | d) Draw impedance triangle and voltage phasor diagram for R-L series circuits. | | | | | | | | | | | e) Define the terms admittance and susceptance. State their units. | | | | | | | | | | | | f) Define phase sequence w.r.t. 3ϕ A.C. | | | | | | | | | | | | g) Represent the following by symbols:i) Ideal current sourceii) Practical current source. | | | | | | | | | | | | h) State the conditions under which super position theorem can be applied. | | | | | | | | | | | i) State the maximum power transfer theorem for D.C. circuits. | | | | | | | | | | | | | j) State the behaviouri) Pure L | of following e | elements at the tin
ii) Pur | | ching i. | e. tran | sient p | period: | : | | | | k) Define quality factor for parallel resonance and write its mathematical expression. | | | | | | | | | | | | i) State the numericali) Line current andii) Line voltage an | d phase curren | nt | ed load bet | ween: | | | | | | | • | , | | , | | | | | | | .a | | 2. | Attempt any four of the following: | | | | | | | | 16 | | | | a) Define the following terms with reference to alternating quantity.i) Waveformii) Cycle | | | | | | | | | | | | iii) Frequency | | , • | e period. | | | | | | | 17323 Marks b) A 318 µ F capacitor is connected across a 230V, 50Hz system. ### Determine: - i) Capacitive reactance - ii) R. M. S. value of current - iii) Equation for voltage - iv) Equation for current. - c) Write down different powers in A.C. circuits, also write their equations and units. Draw power triangle. [2] - d) A capacitor having capacitance of $20\,\mu$ F is connected in series with a noninductive resistance of $120\,\Omega$, across 100V, 50Hz supply. Calculate : - i) Current - ii) The phase difference between voltage and current - iii) The power also draw the vector diagram. - e) Draw graphical representation of resistance, inductive reactance, capacitive reactance and impedance related to frequency for series resonance circuit. - f) Compare series and parallel circuits on any four points. # 3. Attempt any four of the following: 16 - a) Explain the response of A.C. supply to pure inductance, draw wave form for the same. - b) Draw vector diagram, impedance triangle and power triangle for series R-L-C circuit when connected to single phase a.c. supply for the condition XL < XC. - c) A 200W, 100V lamp is connected in series with a capacitor of 20 μ F to a 120V, 50Hz a.c. supply. Calculate : - i) Impedance of the circuit - ii) The current flowing through circuit - iii) The phase angle between voltage and current. - d) A circuit having a resistance of 5 Ω , L = 0.4H and capacitance in series is connected across a 100V, 50Hz supply. Calculate: - i) Value of capacitance to give resonance - ii) Circuit current at resonance - iii) Voltage across resistor - iv) Q factor of resonance. - e) State the various methods of solving parallel AC circuits. Explain any one method for a simple parallel circuit. - f) Two impedances $(3 + j4) \Omega$ and $(12 j4) \Omega$ are connected in parallel across 230V, 1ϕ , 50Hz a.c. supply. Determine current drawn by each path and total current in the circuit. ## 4. Attempt any four of the following: 16 - a) A choke coil has a resistance of 4Ω and inductance of 0.07H is connected in parallel with another coil of resistance 10Ω and inductance of 0.12H. The combination is connected across 230V, 50Hz supply. Determine total current and current through each branch. - b) Derive the condition for parallel resonance. - c) Explain in brief the process of generation of 3 phase e.m.f. Marks - d) State any four advantages of polyphase circuits over single phase circuit. - e) A balanced delta connected load having phase impedance of $3+j4\Omega$ connected to 400V, 3ϕ A.C. supply. Determine : - i) Line current ii) Power factor iii) Active power - iv) Apparent power. - f) A balanced star connected load of $(8 + j6)\Omega$ per phase is connected to a balanced 3-phase 400V, supply. Find the line current, power factor, power and total volt amperes. # 5. Attempt any two of the following: 16 a) Determine the current through 1.5Ω in the network using Thevenin's theorem. Fig. No. 1 Fig. No. 1 b) Find the current in $40\,\Omega$ and $10\,\Omega$ in Fig. No. 2 by node voltage analysis method. c) Calculate current in 10Ω resistance using mesh analysis in the circuit shown in Fig. No. 3. Marks 16 - **6.** Attempt **any four** of the following: - a) Explain the concept of initial and final conditions in switching for the elements R, L and C. - b) Find the current through 4Ω resistance shown in Fig. No. 4 using superposition theorem. c) Use Norton's theorem, find the current through 3Ω resistance. For the circuit shown in Fig. No. 5. Fig. No. 5 - d) State Norton's theorem and write its procedural steps to find current in a branch (Assume a simple circuit). - e) Find the value of resistance to be connected across AB so as to consume maximum power in Fig. No. 6. Also find maximum power consumed by it. Fig. No. 6 f) Prove that in a 3 phase star connected balanced load system, line voltage is $\sqrt{3}$ times phase voltage.